期刊文献+

一类分数阶p-Laplace方程积分三点边值问题正解的存在性 被引量:2

Existence of Positive Solutions for a Fractional p-Laplace Differential Equation of Three-point Integral Boundary Value Problem
下载PDF
导出
摘要 研究一类分数阶p-Laplace方程积分三点边值问题{CDα0+φp(CDβ0+u(t))+a(t)f(t,u(t))=0,ηu(0)=0,u″(0)=0,u(1)=γ0∫u(s)ds,CDβ0+u(0)=0,其中CDα0+和CDβ0+都是Caputo分数阶导数,0<α≤1,2<β≤3.利用锥上不动点指数理论,获得该问题正解存在的一系列充分条件,并举例说明所得结果的有效性. In this paper,we consider the following three-point integral boundary value problem for fractional p-Laplace differential equation {CD0α+(o)p(CD0β+u(t)) +a(t)f(t,u(t)) =0,u(0) =0,u"(0) =0,u(1) =γ(f)η0u(s)ds,CD0β+u(0) =0,where CD0α+ and CD0β+ denote the Caputo fractional derivatives,0 <α≤1,2 <β≤3.By applying the fixed-point index theory in cone,we obtain a series of sufficient conditions for the existence of positive solution for this problem.These results extend the corresponding ones of ordinary differential equations of integer order and the known results.Finally,two examples are presented to illustrate the effectiveness of the results.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期867-874,共8页 Journal of Sichuan Normal University(Natural Science)
基金 陕西省科技厅自然科学基金(2012JM1021) 江西省自然科学青年基金(20114BAB211015) 江西省教育厅教学改革项目基金(JXJG11-15-7)资助项目
关键词 分数阶导数 P-LAPLACE方程 积分三点边值问题 不动点指数定理 正解 caputo fractional derivative p-Laplace differential equation three-point integral boundary value problem fixed point index theorem positive solution
  • 相关文献

参考文献17

  • 1Leibenson L S.General problem of the movement of a compressible fluid in a porous medium[J].Izv Akad Nauk SSSR Geogr Geophys,1983,9:7-10.
  • 2Jiang D,Gao W.Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian[J].J Math Anal Appl,2000,252:631-648.
  • 3陈顺清.二阶p-Laplacian算子方程的正周期解(英文)[J].四川师范大学学报(自然科学版),2008,31(2):155-158. 被引量:7
  • 4刘兴元.具p-Laplacian算子方程多点边值问题3个正解的存在性[J].四川师范大学学报(自然科学版),2012,35(1):78-81. 被引量:5
  • 5郑春华,刘文斌.一类p-Laplacian方程非局部问题解的存在性[J].四川师范大学学报(自然科学版),2013,36(6):856-861. 被引量:3
  • 6Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974.
  • 7Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier Science,2006.
  • 8Kilbas A A,Trujillo J J.Differential equations of fractional order:methods,results and problems Ⅱ[J].Appl Anal,2002,81:435-493.
  • 9Bai Z,Lü H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505.
  • 10Zhang S.Positive solution for boundary value problem of nonlinear fractional differential equations[J].Electron J Diff Eqns,2006,36:1-12.

二级参考文献79

  • 1Erbe H L,Tang M. Existence and multiplicity of positive solutions to nonlinear boundary-value problems[J]. Differential Equations Dynamical Systems,1996,4:313-320.
  • 2Sun W, Chen S, Zhang Q, et al. Existence of positive solutions to n-point nonhomogeneous boundary value problem[J]. J Math Anal Appl,2007,330:612-621.
  • 3Palamides K P. Positive and monotone solutions of an m-point boundary-value problem[J]. Electron J Differential Equation,2002,18:1-16.
  • 4Pang H, Ge W. Existence and monotone iteration of positive solutions for three-point boundary value problem[J]. Appl Math Lett,2008,21:656-661.
  • 5Kwong M K, Wong J S W. The shooting methods and non-homogeneous multi-point BVPs of second order ODE[J]. Boundary Value Problems,2007,2007:64012.
  • 6Liu Y. The existence of multiple positive solutions of p-Laplacian boundary value problems[J]. Mathematica Slovaca,2007,57:225-242.
  • 7Ma D, Han J, Chen X. Positive solution of three-point boundary value problem for the one-dimensional p-Laplacian with singularities[J]. J Mathematical Analysis and Applications,2006,324:118-133.
  • 8Zhou Y, Xu Y. Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations[J]. J Mathematical Analysis and Applications, 2006,320(2):578-590.
  • 9Deimling K. Nonlinear Functional Analysis [ M ]. Berlin : Springer-Verlag, 1985.
  • 10Guo Da-jun, Sun Jing-xian, Liu Zhao-li. Functional Method of Nonlinear Ordinary Differential Equations [ M ]. Jinan:Shandong Science and Technology Press, 1995.

共引文献17

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部