摘要
研究一类分数阶p-Laplace方程积分三点边值问题{CDα0+φp(CDβ0+u(t))+a(t)f(t,u(t))=0,ηu(0)=0,u″(0)=0,u(1)=γ0∫u(s)ds,CDβ0+u(0)=0,其中CDα0+和CDβ0+都是Caputo分数阶导数,0<α≤1,2<β≤3.利用锥上不动点指数理论,获得该问题正解存在的一系列充分条件,并举例说明所得结果的有效性.
In this paper,we consider the following three-point integral boundary value problem for fractional p-Laplace differential equation {CD0α+(o)p(CD0β+u(t)) +a(t)f(t,u(t)) =0,u(0) =0,u"(0) =0,u(1) =γ(f)η0u(s)ds,CD0β+u(0) =0,where CD0α+ and CD0β+ denote the Caputo fractional derivatives,0 <α≤1,2 <β≤3.By applying the fixed-point index theory in cone,we obtain a series of sufficient conditions for the existence of positive solution for this problem.These results extend the corresponding ones of ordinary differential equations of integer order and the known results.Finally,two examples are presented to illustrate the effectiveness of the results.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第6期867-874,共8页
Journal of Sichuan Normal University(Natural Science)
基金
陕西省科技厅自然科学基金(2012JM1021)
江西省自然科学青年基金(20114BAB211015)
江西省教育厅教学改革项目基金(JXJG11-15-7)资助项目
关键词
分数阶导数
P-LAPLACE方程
积分三点边值问题
不动点指数定理
正解
caputo fractional derivative
p-Laplace differential equation
three-point integral boundary value problem
fixed point index theorem
positive solution