期刊文献+

EMD-IT去噪算法的阈值估计方法 被引量:2

Threshold estimation method for EMD-IT denoising algorithm
下载PDF
导出
摘要 为解决EMD-IT去噪算法中阈值难以确定的问题,提出一种基于高斯白噪声能量分布的阈值估计方法。将含噪信号进行经验模态分解并估计各固有模态函数(IMF)中噪声的能量;根据模态单元阈值的含义,在各IMF中利用去除掉的模态单元包含的总能量等于噪声能量这一准则估计阈值。合成数据和实际心电信号的去噪仿真实验验证了该方法的有效性,其是自适应的且避免了阈值选择的主观性。 A threshold estimation method based on noise energy distribution for EMD-IT was proposed to solve the difficulty of threshold determination.Firstly,the noisy signal was decomposed using EMD and the noise energy of each level IMF was estimated.Secondly,the criterion that the total energy contained in the removed mode cells is equal to noise energy was used to estimate the threshold based on the meaning of mode cell threshold.The method can avoid estimating threshold subjectively and it is selfadaptive.Finally,simulations results with synthetic signals and real ECG signals verify the validity of the proposed method.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第12期4386-4389,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(61071188) 中央高校基本科研业务费基金项目(3142013026 3142014127) 华北科技学院应用数学重点学科基金项目(HKXJZD201402)
关键词 经验模态分解 固有模态函数 模态单元 高斯噪声 阈值参数 empirical mode decomposition(EMD) intrinsic mode function(IMF) mode cell Gaussian noise threshold parameter
  • 相关文献

参考文献12

二级参考文献51

  • 1蔡坤,陆尧胜.基于中值滤波的心电基线校正方法的研究[J].中国医疗设备,2004,22(2):5-7. 被引量:19
  • 2韩敏,刘玉花,史志伟,项牧.改进局部投影算法的混沌降噪研究[J].系统仿真学报,2007,19(2):364-368. 被引量:16
  • 3Donoho D L. Adapting to unknown smoothness via wavelet- shrinkage[J]. J. Amer. Statist. Assoc., 1995, 90: 1200- 1224.
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hibert Spectrum for nonlinear and non-stationary time series analysis [ C ]. Proc. R. Soc. Lond. A, 1998,454:903 - 995.
  • 5Boudraa A O, Cexus J C, Saidi Z. EMD-Based Signal Noise Reduction [ J ]. International Journal of Signal Processing, 2004, 1(1): 33-37.
  • 6Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the hibert spectrum [J]. Annu. Rev. Fluid Mech. , 1999,31:417 - 457.
  • 7Patrick Flandrin, Gabriel Rilling, Paulo Goncalves. Empirical Mode Decomposition as a Filter Bank [ J ]. IEEE Signal Processing Letters, 2004, 11 (2) : 112 - 114.
  • 8Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J], Biometrika, 1994. 81(3):425-455.
  • 9Donoho D L. De-noising by soft-thresholding [ J ]. IEEE Trans. Inform. Theory, 1995, 41(3) : 613 -627.
  • 10Borg G G, Harris J H. Application of Plasma Columns to Radiofrequency Antennas [ J]. Applied Physics Letters, 1999, 74 (22) : 3272 - 3274.

共引文献144

同被引文献38

  • 1KaergaardK, Jensen SH, Puthusserypady S. A comprehensiveperformance analysis of EEMD-BLMS and DWT-NN hybridalgorithms for ECG denoising[J]. Biomed Sign Proc Contr, 2016,25: 178-187.
  • 2YochumM, Renaud C, Jacquir S. Automatic detection of P, QRSand T patterns in 12 leads ECG signal based on CWT[J]. BiomedSign Proc Contr, 2016, 25: 46-52.
  • 3PadhyS, Sharma LN, Dandapat S. Multilead ECG datacompression using SVD in multiresolution domain[J]. Biomed SignProc Contr, 2015, 23: 10-18.
  • 4GrossiG, Lanzarotti R, Lin J. High-rate compression of ECGsignals by an accuracy-driven sparsity model relying on naturalbasis[J]. Digit Sign Proc, 2015, 45: 96-106.
  • 5EdwardJS, Ramu P, Swaminathan R. Imperceptibility - robustnesstradeoff studies for ECG steganography using continuous antcolony optimization[J]. Expert Syst Appl, 2015, 49: 123-135.
  • 6Kumar R, Kumar A, Singh GK. Hybrid method based on singularvalue decomposition and embedded zero tree wavelet technique forECG signal compression.[J]. Comput Meth Prog Biomed, 2016.
  • 7TawficI, Kayhan S. Compressed sensing of ECG signal forwireless system with new fast iterative method[J]. Comput MethProg Biomed, 2015, 122(3): 437-449.
  • 8SharmaL N. Coding ECG beats using multiscale compressedsensing based processing[J]. Comput Electr Eng, 2015, 45(C): 211-221.
  • 9Liu T, Si Y, Wen D, et al. Dictionary learning for VQ featureextraction in ECG beats classification[J]. Expert Syst Appl, 2016,53: 129-137.
  • 10Fatin A, Naomie S, Arief R, et all. Arrhythmia recognition andclassification using combined linear and nonlinear features of ECGsignals[J]. Comput Meth Prog Biomed, 2016, 127: 52-63.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部