期刊文献+

基于图稀疏正则化多测量向量模型的高光谱压缩感知重建 被引量:5

Compressed Sensing Reconstruction of Hyperspectral Image Using the Graph Sparsity Regularized Multiple Measurement Vector Model
下载PDF
导出
摘要 压缩感知重建是解决高光谱现有成像模式数据量大冗余度高问题的一个有效机制。针对高光谱图像的多通道特性,该文建立了高光谱压缩感知的多测量向量模型,编码端使用随机卷积算子对各通道进行快速采样,生成测量向量矩阵。解码端构建图稀疏正则化的联合重建模型,在稀疏变换域将高光谱图像分解为谱间的关联成分和差异成分,通过图结构化稀疏度量表征关联成分的空谱相关性,并约束谱间差异成分的稀疏性。进一步提出模型求解的交替方向乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。对多个实测数据集进行了对比实验,实验结果验证了该文模型与算法的有效性。 Compressed Sensing (CS) reconstruction of hyperspectral image is an effective mechanism to comedy the traditional hypcrspectral imaging pattern with the drawback of high redundancy and vast data volume. This paper presents a new multiple measurement vector model for compressed sensing reconstruction of hyperspectral data in consideration of its multiple channel character. In the encoding side, the random convolution operator is used to rapidly obtain the measurement vector of each channel which is subsequently reorganized as a measurement vector matrix. In the decoding side, a joint reconstruction model is proposed to reconstruct the hyperspectral data from the multiple measurement vectors. The model decomposes the hyperspectral data into the inter-channel correlated and differenced component in the sparsifying transform domain, where the correlated component with high spatial and spectral correlation is constrained to be graph structured sparse and the differenced component is constrained to be 11 sparse. A numerical optimization algorithm is also proposed to solve the reconstruction model by the alternating direction method of multiplier. Every sub-problem in the iteration formula admits analysis solution by introducing the auxiliary variable and linearization operation. The complexity of the numerical optimization algorithm is reduced. The experimental results demonstrate the effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第12期2942-2948,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61272223,61300162,81201161) 江苏省自然科学基金(BK2012045,BK20131003) 中国博士后基金(20110491429) 江苏省博士后基金(1101083C) CAST创新基金(201227) 江苏省光谱成像与智能感知重点实验室基金资助课题
关键词 高光谱图像 压缩感知:多测量向量 图稀疏 交替方向乘子法 Hyperspectral image Compressed Sensing (CS) Multiple measurement vectors Graph structuredsparsity Alternated direction method of multiplier
  • 相关文献

参考文献16

  • 1Chang C I. Hyperspectral Imaging: Techniques for SpectralDetection and Classification[M]. NewYork: Springer, 2003:3-10.
  • 2刘芳,武娇,杨淑媛,焦李成.结构化压缩感知研究进展[J].自动化学报,2013,39(12):1980-1995. 被引量:46
  • 3李然,干宗良,崔子冠,武明虎,朱秀昌.联合时空特征的视频分块压缩感知重构[J].电子与信息学报,2014,36(2):285-292. 被引量:11
  • 4Wagadarikar A, John R, Willett R, et al. Single disperserdesign for coded aperture snapshot spectral imaging[J].Applied Optics' 2008, 47(10): B44 B51.
  • 5Pfeffer Y. Compressive sensing for hyperspectral imaging [D].[Ph.D. dissertation], Technion-Israel Institute of Technology,2010.
  • 6Duarte M and Baraniuk R. Kronecker compressive sensing[J].IEEE Transactions on Image Processing, 2011, 21(2):494-504.
  • 7Shane F, Bhaskar D, Engan K, et al. Sparse solutions tolinear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing,2005,53(7):2477-2488.
  • 8Du X,Chen D, and Cheng L. A reduced model with analternating minimization algorithm for support recovery ofmultiple measurement vectors[J]. IET Signal Processing, 2013,7(2): 112-119.
  • 9Eldar Y C and Rauhut H. Average case analysis ofmultichannel sparse recovery using convex relaxation[J].IEEE Transactions on Information Theory, 2010, 56(1):505-519.
  • 10Golbabaee M and Vandergheynst P. Hyperspectral imagecompressed sensing via low-rank and joint-sparse matrixrecovery[C]. IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP), Kyoto, 2012:2741-2744.

二级参考文献43

  • 1Eldar Y C and Kutyniok G. Compressed Sensing: Theory and Applications[M]. Cambridge: Cambridge University Press, 2012: 1-5.
  • 2Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 3Baraniuk R C, Cevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on InformationTheory, 2010, 56(4): 1982-2001.
  • 4Oechard G, Zhang J, Suo Y, et al.. Real time compressive sensing video reconstruction in hardware[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 604-614.
  • 5Holloway J, Sankaranarayanan A C, Veeraraghavan, A, et al.. Flutter shutter video camera for compressive of videos[C]. IEEE International Conference on Computational Photography, Seattle, WA, 2012: 1-9.
  • 6Sankaranarayanan A C, Studer C, and Baraniuk R G. CS-MUVI: video compressive sensing for spatial-multiplexing cameras[C]. IEEE International Conference on Computational Photography, Seattle, WA, 2012: 1-10.
  • 7Gan L. Block compressed sensing of natural images[C]. International Conference on Digital Signal Processing, Cardiff UK, 2007: 403-406.
  • 8Tramel E W. Distance-weighted regularization for compressed sensing video recovery and supervised hyperspectral classification[D]. [Ph.D. dissertation], Mississippi State University, 2012.
  • 9Mun S and Fowler J E. Block compressed sensing of images using directional transforms[C]. International Conference on Image Processing, Cario, Egypt, 2009: 3021-3024.
  • 10Chen C, Tramel E W, and Fowler J E. Compressed sensing recovery of images and video using multihypothesis predictions[C]. Conference Record of the 46th Asilomar Conference, Pracific Grove, CA, 2011: 1193-1198.

共引文献55

同被引文献37

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部