摘要
A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construc- tion method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifimctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the under- lying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-fimction recon- struction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These pre- liminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR tech- nique in human subjects.
A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construction method, targeted muscle reinnervation(TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifunctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the underlying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-function reconstruction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These preliminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR technique in human subjects.
基金
Project supported by the National Basic Research Program(973)of China(No.2013CB329505)
the National Natural Science Foundation of China(Nos.61135004 and 61201114)
the China Postdoctoral Science Foundation(No.2013M541046)
the Shenzhen Governmental Basic Research Grant(No.JCYJ20120617115010496)
the State Key Laboratory of Bioelectronics of Southeast University