期刊文献+

广义Poisson跳-扩散模型支付红利下期权的保险精算定价 被引量:2

Insurance actuary pricing of option on dividend-paying stocks for general Poisson jump-diffusion models
下载PDF
导出
摘要 主要研究了带Poisson跳跃的广义跳-扩散模型有红利支付下欧式期权的保险精算定价.利用资产价格过程的实际概率测度和公平保费原理,得到了有连续红利支付下欧式看涨期权的保险精算定价公式,并给出了欧式看涨期权与欧式看跌期权之间的平价关系. This paper mainly studies the insurance actuary pricing of European options on dividend-paying stocks for general Poisson jump-diffusion.By using the physical probabilistic measure of the pricing process of an assess and the principle of a fair premium,the insurance actuary pricing of European call options is obtained on continuous dividend-paying stocks,and the put-call parity of European option is given.
作者 张东云
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2014年第6期840-843,共4页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(71203056) 河南师范大学青年骨干教师培养计划项目(051)
关键词 跳-扩散过程 红利 期权定价 保险精算定价 jump-diffusion process dividend-paying option pricing insurance actuary pricing
  • 相关文献

参考文献9

二级参考文献33

  • 1刘坚,邓国和,杨向群.利率和股票价格遵循O-U过程的再装期权定价[J].工程数学学报,2007,24(2):237-241. 被引量:6
  • 2Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654.
  • 3Cox J C, Ross S A, Rubinstein M. Option pricing: A simplified approach[J]. Journal of Financial Economics, 1979, 7(3): 229-263.
  • 4Merton R C. Theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4(1): 141-183.
  • 5Bladt M, Rydberg H T. An actuarial approach to option pricing under the physical measure and witout market assumptions[J]. Insurance: Mathmatics and Economics, 1998, 22(1): 65-73.
  • 6Cox J, Ingersoll J, Ross S. A theory of the term structure of interest rates[J]. Econometrica, 1985, 58: 385-407.
  • 7Knopova V P, Pepelyaeva T V. Stochastic models of financial mathematics[J]. Cybernetics and Systems Analysis, 2001, 37(3): 427-433.
  • 8Li J L, Clemons C B, Young G W, et al. Solutions of two-factor models with variable interest rates[J]. Journal of Computational and Applied Mathematics, 2008, 222(1): 30-41.
  • 9Johnson R S, Zuber R A, Gandar J M. Binomial pricing of fixed-income securities for increasing and decreasing interest rate cases[J]. Applied Financial Economics, 2006, 16(14): 1029-1046.
  • 10Blacd F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973;81(3) :637 - 654.

共引文献121

同被引文献13

  • 1杨云锋,杨亚强,夏小刚.定期支付红利的跳扩散模型的期权定价[J].宝鸡文理学院学报(自然科学版),2007,27(4):272-274. 被引量:2
  • 2KALUSZKA M. Optimal reinsurance under mean-vari- ance premium principles [ J ]. Insurance : Mathematics and Economics,2001,28 (2) :61-69.
  • 3YOUNG V R. Optimal insurance under Wangs premi- um principle [ J ]. Insurance: Mathematics and Eco- nomics, 1999,25 ( 2 ) : 109-122.
  • 4GAJEK L,ZAGRODNY D. Optimal reinsurance under general risk measures [ J ]. Insurance: Mathematics and Economics, 2004,34 ( 2 ) : 227-240.
  • 5GAJEK L, ZAGRODNY D. Insurer' s optimal reinsur- ance strategies [ J]. Insurance- Mathematics and Eco- nomics ,2000,27 ( 1 ) : 105-112.
  • 6GERRERHU.数学风险导引[M].成世学,严颖,译.北京:世界图书出版公司,1997:138-191.
  • 7BROWNE S. Optimal investment policy for a firm with a random risk process [ J ]. Exponential utility and minimizing the probability of ruin, Mathematics of Op- erations Research,1995,20(4) :937-958.
  • 8翁小勇,杨娟.随机利率及保费的离散风险模型中的破产问题[J].数学杂志,2009,29(3):335-338. 被引量:3
  • 9陈超,刘东艳.随机支付红利的跳-扩散模型的期权定价[J].数学的实践与认识,2011,41(21):47-51. 被引量:3
  • 10刘小东.基于均值-方差模型的保险资金投资组合研究[J].重庆工商大学学报(自然科学版),2013,30(7):37-41. 被引量:4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部