期刊文献+

节理岩体中纵波传播特性数值研究 被引量:2

Numerical Study of P-wave Propagation Characteristics of Jointed Rock Mass
下载PDF
导出
摘要 利用通用离散元程序(UDEC)研究应力波在单个和多个平行节理中的传播规律,为了简化问题,其中的应力波为垂直节理入射的P波.数值模拟的结果表明,在单个节理的情况下,透射系数的大小只与节理的法向刚度有关,而与节理的剪切刚度和内摩擦角无关;在多个平行节理的情况下,节理数影响应力波的透反射情况,节理数增加,透射系数随着节理间距减小的变化值增大. In this paper , the universal distinct element code ( UDEC ) was use to study the propagation laws of P wave in single and multiple parallel jointed rock mass .To simplify the problem , the incident wave is P-wave and the direction of its propagation is perpendicular to the fractures .The results of numerical simulation show that the magnitude of the transmission coefficient depends only on the joint normal stiffness .It has nothing to do with the joint shear stiffness and angle of internal friction in the case of single joint .In the case of multiple parallel joints , joint count influences the transmission and reflection effects of stress wave .With the increase of the number of joints , the change value of the transmission coefficient increases with the decrease of the joint spacing .
作者 陈勇 王志亮
出处 《佳木斯大学学报(自然科学版)》 CAS 2014年第6期815-817,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 离散元 UDEC 应力波 平行节理 数值模拟 discrete element method UDEC stress wave parallel joints numerical simulation
  • 相关文献

参考文献5

二级参考文献37

  • 1[1]Goodman R E. Methods of geological engineering in discontinuous rocks[M]. St Paul: West Publishing, 1976.135-140.
  • 2[2]Goodman R E, Taylor R L, Brekke T A. A model of the mechanics of jointed rock[J]. J Soil Mech Div, ASCE, 1968, 94: 637-659.
  • 3[3]Ghaboussi J, Wilson E L, Isenberg J. Finite ele-ments for rock joints and interfaces[J]. J Soil Mech Div, ASCE, 1973, 99: 833-848.
  • 4[4]Beer G.Implementation of combined boundary ele- ment-finite element analysis with applications in geomechanics[A]. Banerjee P K, Watson J O. Developments in Boundary Element Methods[C]. London: Applied Science, 1986. 191-226.
  • 5[5]Crotty J M, Wardle L J. Boundary integral analysis of piecewise homogeneous media with structural discontinuities[J]. Int J Rock Mech Min Sci Geomech Abstr, 1985, 22: 419-427.
  • 6[6]Pande G N, Beer G, Williams J R. Numerical me- thods in rock mechanics[M]. New York: Wiley, 1990.120-140.
  • 7[7]Schwer L E, Lindberg H E. Application brief: a fin-ite element slideline approach for calculating tunnel response in jointed rock[J]. Int J Num Anal Methods Geomech,1992, 16: 529-540.
  • 8[8]Cundall P A. A computer model for simulating pro-gressive large scale movements in blocky rock system[A]. Proc Symp Int Soc Rock Mechanics, Nancy, France. 1971,1: paper II-8.
  • 9[9]Henrych J. The dynamic of explosion and its use [M]. Amsterdam: Elsevier, 1979.125-135.
  • 10[10]Pyrak-Nolte L J. Seismic visibility of fractures[D]. University of California, Berkeley. 1988.

共引文献93

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部