期刊文献+

序粒度标记结构及其粗糙近似 被引量:17

Ordered Granular Labeled Structures and Rough Approximations
下载PDF
导出
摘要 粒计算是知识表示和数据挖掘的一个重要方法.它模拟人类思考模式,以粒为基本计算单位,以处理大规模复杂数据和信息等建立有效的计算模型为目标.针对具有多粒度标记的序信息系统的知识获取问题,提出了基于序粒度标记结构的粗糙近似.首先,介绍了序标记结构的概念,并在序标记结构的对象集中定义了一个优势关系,同时给出了由优势关系导出的优势标记块,并进一步定义了基于优势关系的集合的序下近似与序上近似和序标记下近似与序标记上近似的概念,给出了近似算子的一些性质.证明了由序标记结构导出的集合的下近似质量与上近似质量是一对对偶的必然性测度与可能性测度.最后,定义了多粒度序标记结构的概念,并讨论了多粒度序标记结构中不同粒度下近似集之间的关系. Granular computing, which imitates human being's thinking, is an approach for knowledge representation and data mining. Its basic computing unit is called granule, and its objective is to establish effective computation models for dealing with large scale complex data and information. In order to study knowledge acquisition in ordered information systems with multi-granular labels, rough set approximations based on ordered granular labeled structures are explored. The concept of ordered labeled structures is first introduced. A dominance relation on the universe of discourse from an ordered labeled structure is also defined. Dominated labeled blocks determined by the dominance relation are constructed. Ordered lower approximations and ordered upper approximations, as well as ordered labeled lower approximations and ordered labeled upper approximations of sets based on dominance relations, are then proposed. Properties of approximation operators are examined. It is further proved that the qualities of lower and upper approximations of a set derived from an ordered labeled structure are a dual pair of necessity measure and possibility measure. Finally, multi-scale ordered granular labeled structures are defined and relationships among rough approximations with different scales induced from multi-scale ordered granular labeled structures are discussed.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第12期2623-2632,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61272021 61075120 11071284 61173181) 浙江省自然科学基金重点项目(LZ12F03002) 计算智能重庆市重点实验室开放基金项目(CQ-LCI-2013-01)
关键词 近似算子 粒计算 标记块 序标记结构 粗糙集 approximation operators granular computing labeled blocks ordered labeled structures rough sets
  • 相关文献

参考文献40

  • 1Lin T Y.Granular computing:Structures,representations,and applications[G]//LNAI 2639:Proc of the 9th Int Conf on Rough Sets,Fuzzy Sets,Data Mining,and Granular Computing.Berlin:Springer,2003:16-24.
  • 2苗夺谦,李德毅,姚一豫,等.不确定性与粒计算[M].北京:科学出版社,2011.
  • 3Bianucci D,Cattaneo G.Information entropy and granulation co-entropy of partitions and coverings:A summary[G]//LNCS 5656:Trans on Rough Sets X.Berlin:Springer,2009:15-66.
  • 4Bittner T,Stell J.Stratified rough sets and vagueness[G]//LNCS 2825:Proc of Int Conf on Spatial Information Theory (COSIT2003).Berlin:Springer,2003:270-286.
  • 5Doherty P,Lukaszewicz W,Skowron A,et al.Knowledge Representation Techniques:A Rough Set Approach[M].Berlin:Springer,2006.
  • 6Honko P.Association discovery from relational data via granular computing[J].Information Sciences,2013,234:136-149.
  • 7Inuiguchi M,Hirano S,Tsumoto S.Rough Set Theory and Granular Computing[M].Berlin:Springer,2003.
  • 8Leung Y,Li D Y.Maximal consistent block technique for rule acquisition in incomplete information systems[J].Information Sciences,2003,153:85-106.
  • 9Liang J Y,Shi Z Z.The information entropy,rough entropy and knowledge granulation in rough set theory[J].International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,2004,12(1):37-46.
  • 10Liang J Y,Wang J H,Qian Y H.A new measure of uncertainty based on knowledge granulation for rough sets[J].Information Sciences,2009,179(4):458-470.

二级参考文献128

  • 1刘云翔,孙吉贵.智能决策中的模糊近似[J].计算机研究与发展,2004,41(6):991-995. 被引量:3
  • 2ZHANG Wenxiu,WEI Ling,QI Jianjun.Attribute reduction theory and approach to concept lattice[J].Science in China(Series F),2005,48(6):713-726. 被引量:73
  • 3苗夺谦,王国胤,刘清,等.粒计算:过去、现在与展望[M].北京:科学出版社,2007.
  • 4[2]T Y Lin, Q Liu. First-order rough logicⅠ: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996, 27(2-3): 137~154
  • 5[3]A Skowron. Toward intelligent systems: Calculi of information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 9~30
  • 6[4]A Skowron, J Stepaniuk, James F Peters. Extracting patterns using information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 135~142
  • 7[6]Q Liu. Granular language and its deductive reasoning. Communications of Institute of Information and Computing Machinery, 2002, 5(2): 63~66
  • 8[8]M Banerjee, M K Chakraborty. Rough algebra. Institute of Computer Science, Warsaw University of Technology, ICS, Tech Rep: 47/93, 1993
  • 9[9]Q Liu. λ-level rough equality relation and the inference of rough paramodulation. In: Proc of the 2nd Int'l Conf on Rough Sets and Current Trends in Computing(RSCTC'2000), LNAI 2005. Berlin: Springer, 2000. 462~469
  • 10[11]Qing Liu, Qun Liu. Approximate reasoning based on granular computing in granular logic. 2002 Int'l Conf on Machine Learning and Cybernetics, Hoboken, USA, 2002

共引文献195

同被引文献98

引证文献17

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部