期刊文献+

多变异策略差分进化算法的研究与应用 被引量:13

Research and Application of Differential Evolution Algorithm Under Multiple Mutation Strategy
下载PDF
导出
摘要 标准差分进化(DE)算法在高维多峰等复杂函数优化时易出现早熟现象,并且算法后期收敛速度较慢。为此,研究2种标准差分进化算法的变异策略(DE/rand/1和DE/best/1),并将其进行串行组合,提出一种多变异策略的差分进化算法(MDE)。在4个Benchmark函数上的测试结果表明,在多变异策略下,通过对MDE算法控制参数的调整能有效拓展和平衡改进后算法的全局与局部搜索能力,其所得最优解的精度、算法的收敛速度都较标准差分进化算法有明显优势,能较好地解决电力负载分配问题。 In order to overcome the shortcomings of the standard Differential Evolution ( DE ) algorithm in the optimization of complex functions like dimension multi-modal functions,such as the problem of premature and slow later convergence,this paper proposes a DE algorithm based on the Mutation strategy( MDE) through serial combination of DE/rand/1 and DE/best/1. It makes an in-depth study of this algorithms,and finally the algorithm is tested on the four Benchmark functions. Result shows that through the modulation of the control parameters of MDE can effectively expands and balances the global and local search capabilities of the improved algorithm,and its resultant optimal accuracy,and convergence speed are better than standard DE algorithm. It can be well applied in electric power load distribution.
出处 《计算机工程》 CAS CSCD 2014年第12期146-150,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60974048) 2011年度湖南省高校创新平台开放基金资助项目(11K028) 湖南科技大学博士启动基金资助项目(E51066)
关键词 差分进化 多变异 优化策略 电力负载分配 Differential Evolution (DE) multiple mutation optimizing strategy electric power load distribution
  • 相关文献

参考文献16

  • 1Storn R,Price K.Differential Evolution——A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 2许小健,黄小平,钱德玲.自适应加速差分进化算法[J].复杂系统与复杂性科学,2008,5(1):87-92. 被引量:24
  • 3邓泽喜,刘晓冀.差分进化算法的交叉概率因子递增策略研究[J].计算机工程与应用,2008,44(27):33-36. 被引量:17
  • 4肖术骏,朱学峰.一种改进的快速高效的差分进化算法[J].合肥工业大学学报(自然科学版),2009,32(11):1700-1703. 被引量:13
  • 5Salman A,Engelbrecht A P,Omran M G H.Empirical Analysis of Self-adaptive Differential Evolution[J].European Journal of Operational Research,2007,183(2):785-804.
  • 6Liu J,Lampinen J.A Fuzzy Adaptive Differential Evolution Algorithm[J].Soft Computing,2005,9(6):448-462.
  • 7Ali M M,Trn A.Population Set-based Global Optimization Algorithms:Some Modifications and Numerical Studies[J].Computers&Operations Research,2004,31(10):1703-1725.
  • 8Teng N S,Teo J,Hijazi M H A.Self-adaptive Population Sizing for a Tune-free Differential Evolution[J].Soft Computing,2009,13(7):709-724.
  • 9Feoktistov V,Janaqi S.Generalization of the Strategies in Differential Evolution[C]//Proceedings of the18th International Parallel and Distributed Processing Symposium.[S.l.]:IEEE Press,2004:165-170.
  • 10Das S,Abraham A,Chakraborty U K,et al.Differential Evolution Using a Neighborhood-based Mutation Operator[J].IEEE Transactions on Evolutionary Computation,2009,13(3):526-553.

二级参考文献40

  • 1杨小芹,黎明,周琳霞.基于熵的双群体遗传算法研究[J].模式识别与人工智能,2005,18(3):286-290. 被引量:11
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 4何庆元,韩传久.带有扰动项的改进粒子群算法[J].计算机工程与应用,2007,43(7):84-86. 被引量:22
  • 5周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 6Price K V.Differential Evolution vs.the Functions of the second ICEO[C]//IEEE Int Conf on Evolutionary Computation, 1997:153-157.
  • 7Price K.Differential evolution:a fast and simple numerical optimizer[C]//1996 Biennial Conf of the North American Fuzzy Information Processing Sociey,New York,1996:524-527.
  • 8Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R]. International Computer Science Institute, 1995.
  • 9Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4) 341-359.
  • 10Storn R, Price K. Minimizing the real functions of the ICEC "96 contest by Differential Evolution[C]//IEEE Int Conf on Evolutionary Computation. Nagoya, Japan, 1996 : 842- 844.

共引文献90

同被引文献80

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部