期刊文献+

Klein-Gordon-Schrdinger耦合方程的线性化紧致差分格式

A linear compact difference scheme for the coupled Klein-Gordon-Schrdinger equation
下载PDF
导出
摘要 构造了一个新的紧致差分格式对Klein-Gordon-Schrdinger(KGS)耦合方程的周期边值问题进行数值研究,该格式是非耦合且线性的,因此具有更快的计算速度,且便于并行计算.同时讨论了该格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性,收敛阶是O(τ2+h4).数值实验也证明了该格式的有效性. A conservative compact difference scheme is explored for the strongly coupled nonlinear Klein-Gordon-Schrodinger equations.The scheme is uncoupled and linear,thus can be computed by parallel method and need less CPU time than other schemes.After transforming the scheme into matrix form,the convergence and stability of the difference scheme are proved in the L ∞ norm.Numerical experiments are carried out to demonstrate that the com-pact difference scheme is accurate and efficient.
出处 《江苏师范大学学报(自然科学版)》 CAS 2014年第4期44-50,共7页 Journal of Jiangsu Normal University:Natural Science Edition
关键词 Klein-Gordon-Schrodinger 耦合方程 紧致差分格式 收敛性 离散守恒律 coupled Klein-Gordon-Schrodinger equation compact difference scheme convergence discrete conservation law
  • 相关文献

参考文献17

  • 1Makhankov V O. Dynamics of classical solitons(in non-integrable systems)[J]. Phys Lett C, 1978,35 (1) :1.
  • 2Fukuda I,Tsutsumi M. On coupled Klein-Gordon-Schr6dinger equations II [J]. J Math Anal Appl,1978,66(2):358.
  • 3郭柏灵.复Schr6dinger场和实Klein-Gordon场相互作用下一类方程组某些定解问题的整体解[J].中国科学:A辑,1982,2(1):97.
  • 4郭柏灵,苗长兴.Klein-Gordon-Schrdinger方程解的整体存在性及其渐近性[J].中国科学(A辑),1995,25(7):705-714. 被引量:4
  • 5夏静娜,韩淑霞,王明亮.Klein-Gordon-Schrdinger方程组的精确孤立波解[J].应用数学和力学,2002,23(1):52-58. 被引量:10
  • 6Ozawa T,Tsutsumi Y. Asymptotic behaviour of solutions for the coupled Klein Gordon Schrodinger equations[J]. Adv Stud Pure Math,1994,23(1):295.
  • 7Xia J, Wang M. Exact solitary solution of coupled Klein-Gordon-Schrodinger equations[J]. Appl Math Mech, 2002,23 ( 1 ) : 58.
  • 8Kong Linghua, Liu Ruxun,Xu Zhenli. Numerical simulation of interaction between Schrodinger field and Klein-Gordon field by muhisymplectic method[J]. Appl Math Comput, 2006,181 (1) : 342.
  • 9Xiang Xinming. Numerical analysis for a class of equation system in interaction of complex Sehrodinger field and real Klein Gordon field[J]. Num Math J Chin Univer,1987,9(1) :245.
  • 10Xiang Xinming. Spectral method for solving the system of equations of Schrodinger-Klein Gordon fields[J]. J Comput Appi Math,1988,21(2):161.

二级参考文献57

  • 1白风图,苗长兴.广义耦合KGS方程的整体强解[J].河南科学,1993,11(1):1-8. 被引量:2
  • 2郭柏灵,苗长兴.Klein-Gordon-Schrdinger方程解的整体存在性及其渐近性[J].中国科学(A辑),1995,25(7):705-714. 被引量:4
  • 3郭柏灵.复Schrodinger场和实Klein-Gordon场相互作用下一类方程组某些定解问题的整体解[J].中国科学:A辑,1982,2:97-107.
  • 4Griffiths D J. Introduction to Quantum Mechanics. Englewood Cliffs, N J: Prentice-Hall, 1995.
  • 5Menyuk C R. Stability of solitons in birefringent optical fibers. J Opt Soc Amer B Opt Phys, 1998, 5:392-402.
  • 6Wadati M, Izuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Japan, 1992, 61:2241-2245.
  • 7Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 8Chan T, Shen L. Stability analysis of difference schemes for variable coefficient SchrSdinger type equations. SIAM J Numer Anal, 1987, 24:336-349.
  • 9Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear SchrSdinger equation. J Comput Phys, 1999, 148:397-415.
  • 10Dai W. An unconditionally stable three-level explicit difference scheme for the Schr6dinger equation with a variable coefficient. SIAM J Numer Anal, 1992, 29:174-181.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部