摘要
构造了一个新的紧致差分格式对Klein-Gordon-Schrdinger(KGS)耦合方程的周期边值问题进行数值研究,该格式是非耦合且线性的,因此具有更快的计算速度,且便于并行计算.同时讨论了该格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性,收敛阶是O(τ2+h4).数值实验也证明了该格式的有效性.
A conservative compact difference scheme is explored for the strongly coupled nonlinear Klein-Gordon-Schrodinger equations.The scheme is uncoupled and linear,thus can be computed by parallel method and need less CPU time than other schemes.After transforming the scheme into matrix form,the convergence and stability of the difference scheme are proved in the L ∞ norm.Numerical experiments are carried out to demonstrate that the com-pact difference scheme is accurate and efficient.
出处
《江苏师范大学学报(自然科学版)》
CAS
2014年第4期44-50,共7页
Journal of Jiangsu Normal University:Natural Science Edition