期刊文献+

基于BP神经网络的地下水强化除砷建模研究 被引量:3

Modeling for Enhanced Arsenic Removal from Groundwater Based on BP Neural Network
原文传递
导出
摘要 针对郑州市东周水厂铁锰复合污染条件下的含砷地下原水,经中试和生产性试验研究,在无混凝的曝气/接触氧化过滤除砷技术的基础上,建立了投药量BP神经网络模型。该模型在以出水As<10μg/L为控制条件的前提下,进行不同原水水质条件下药剂投加量的模拟计算,并作为核心模拟算法模块,应用于水厂除砷自动控制加药系统中,完善了水厂当前的自控系统。 Pilot-scale and full-scale experiments were conducted to remove arsenic from raw groundwater polluted by iron and manganese in Dongzhou Waterworks in Zhengzhou. BP neural network model for chemicals dosage control was established based on the process of aeration and contact oxidation filtration without coagulation. Under the premise of As 〈 10 Ixg/L in the effluent, simulation calculation of chemicals dosage was performed by the model under different raw water conditions. The model, as core simulation algorithm module, was applied to the automatic control system for chemicals dosing for arsenic removal to improve the current control system in the waterworks.
出处 《中国给水排水》 CAS CSCD 北大核心 2015年第1期45-48,共4页 China Water & Wastewater
基金 国家水体污染控制与治理科技重大专项(2009ZX07424)
关键词 地下水 曝气/接触氧化过滤 除砷 BP神经网络模型 自控系统 groundwater aeration/contact oxidation filtration arsenic removal BP neural network automatic control system
  • 相关文献

参考文献7

二级参考文献18

  • 1王茂武,孙殿军.地方病防治工作应坚持的6项原则[J].中国地方病学杂志,2004,23(5):397-399. 被引量:16
  • 2陈宇辉,陶涛.洞庭湖区地下水除铁除锰工艺研究[J].河南科学,2005,23(3):422-425. 被引量:2
  • 3李圭白,杨艳玲.第三代城市饮用水净化工艺——超滤为核心技术的组合工艺[J].给水排水,2007,33(4):1-1. 被引量:105
  • 4杨维,郭毓,王泳,杨军峰,王立东,王虎.氨氮污染地下水的动态实验研究[J].沈阳建筑大学学报(自然科学版),2007,23(5):826-831. 被引量:19
  • 5Chakraborti D. Arsenic in ground water in six districts of west Bengal, India [ R ]. Second International Conference on Arsenic Exposure and Health Effects, 1995.
  • 6Smith AH, Lingas EQ, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency [J]. Bulletin of WHO,2000, 78(9):1093-1103.
  • 7郭宗礼.乌脚病盛行地区井水砷含量调查.中华公共卫生杂志(台北),1996,15(35):116-125.
  • 8闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002..
  • 9Da-Sung Joo,Dong-Jin and Heekyung Park . Determination of optimal coagulant dosing rate using an artificial neural network [J]. Journal of water supply -Research and Technology-AQUA, 2000, 49 (1) : 49-55.
  • 10Baxter C W,Stanley S J,and Zhang Q. Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation , J. Water SRT -Aqua , 1999,48 (4) - 129-136.

共引文献66

同被引文献19

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部