期刊文献+

基于禁忌搜索的蝙蝠算法 被引量:1

Bat algorithm based on tabu search
下载PDF
导出
摘要 为了克服蝙蝠算法(BA)易陷入局部最优,收敛速度过快等缺点,以基本蝙蝠算法为基础,提出了基于禁忌搜索的蝙蝠算法(TSBA)。TSBA算法将蝙蝠算法和禁忌搜索算法相结合,采用禁忌表以及渴望水平函数的策略,使算法具有更强的全局寻优能力,有效地避免了早熟现象。为了验证该算法的有效性,采用0-1背包问题作为测试内容。实验结果表明,基于禁忌搜索的TSBA蝙蝠算法比基本的蝙蝠算法具有更强的寻优能力和搜索速度。 In order to solve disadvantages of the bat algorithm (BA), such as easy to fall into local optimum and convergence speed is too fast, based on the fundamental bat algorithm, the bat algorithm based on tabu search (TSBA) is put forward. TSBA combines the algorithm and tabu search algorithm. The tabu list and aspiration level function are utilized to give the algorithm as better search ability. The premature phenomenon is efficiently avoided. In order to verify the effectiveness of the algorithm, 0-1 knapsack problem is used to test. The experimental results show that TSBA has better search ability and faster search speedthan the fundamental bat algorithm.
出处 《计算机时代》 2014年第12期15-18,21,共5页 Computer Era
基金 国家自然科学基金项目"实时数据流中动态模式的发现与跟踪"(60975031)
关键词 蝙蝠算法 禁忌搜索算法 渴望水平函数 禁忌表 0-1背包问题 bat algorithm tabusearchalgorithm aspiration level fimction tabu list 0-1 knapsack problem
  • 相关文献

参考文献9

二级参考文献80

  • 1杨洁,杨胜,曾庆光,李仁发.基于信息素强度的蚁群算法[J].计算机应用,2009,29(3):865-867. 被引量:7
  • 2PottsJ C, Giddens T D, Yadav S B. The development and evalua- tion of an improved genetic algorithm based on migration and ar- tificial selection[J].IEEE Transactions on Systems, Man, and Cybernetics, 1994,24(1): 73-86.
  • 3Zhu Yu. A New Parameter Optimization Algorithm of Penicillin Fermentation Model [C]//2011 International Conference on Transportation and Mechanical & Electrical Engineering. 2011: 2592-2595.
  • 4Patel R, Raghuwanshi M M, Jaiswal A N. Modifying Genetic Al- gorithm with Species and Sexual Selection by using K-means Al- gorithm[C]//2009 IEEE International Advance Computing Conference. 2009:114-119.
  • 5Guo Peng-fei, Wang Xumzhi, Han Ying-shi. The Enhanced Ge- netic Algorithms for the Optimization Design[C]//2010 3rd In- ternational Coference on Biomedical Engineering and Informs tics. Vol. 7,2010:2990-2994.
  • 6Fourman M P. Compaetation of symbolic layout using Gas [C]// Proceeding of the First International Conference on Genetic Al- gorithms and Their Application. Lawrence Erlbaum, 1985:141-153.
  • 7Schaffer J D, Multiple objective optimization with vector evalua- ted genetic algorithms[C]//Proceeding of the First Internation- al Conference on Genetic Algorithms and Their Application. Lawrence Erlbaum, 1985 :93-100.
  • 8Horn J,Nafpliotis N,Goldberg D E. A niched Pareto genetic al- gorithm for multiobjective optimization[C]//Prnceeding of the ICEC International Conference. 1994:82-87.
  • 9Srinivas N, Deb K. Multiobjective Function optimization using nondominated sorting genetic algorithm[J]. Evolutionary Com- putation, 1995,2(2) : 221-248.
  • 10Zitzler E,Deb K, Thiele L. Comparison of multiobjective evolu- tionary algorithms: empirical results[J]. Evolutionary Computa- tion, 2000,8 (2) : 1-24.

共引文献96

同被引文献5

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部