期刊文献+

基于相关向量机的语音识别算法研究 被引量:2

Speech recognition based on relevance vector machine
下载PDF
导出
摘要 对基于相关向量机和矢量量化的语音识别算法模型进行了一系列的研究。与支持向量机识别算法相比,该算法基于贝叶斯统计模型理论,能够给出样本属于某一类的后验概率;而且,该算法充分利用了相关向量机所具有的高泛化性、核函数功能和结果的高稀疏性。基于矢量量化的特征提取仿真表明,该算法在减少相对误差和计算量方面有较大的优势。 A series of studies on speech recognition algorithm based on relevance vector machine(RVM)and vector quantization(VQ)are proposed.The sparseness and prediction probability of RVM make the algorithm suitable for speech recognition in applications.In contrast to the support vector machine(SVM)algorithm,the approach is based on the theory of Bayesian statistical model,giving the posterior probability of samples belonging to one kind.Moreover,the algorithm combines the high generalization,kernel tricks,and sparser performance of RVM to generate more robust classification results and to reduce the computational complexity.The simulations on feature extraction using VQ show that the proposed algorithm outperforms the other systems on reducing the relative error rates and reducing the computational complexity in high dimensionality space and big scale data.
出处 《黑龙江大学工程学报》 2014年第4期52-56,63,共6页 Journal of Engineering of Heilongjiang University
基金 中国船舶重工集团公司709所科技合作项目(J081113012) 哈尔滨市优秀学科带头人基金项目(RC2013XK009003)
关键词 语音识别 相关向量机 矢量量化 贝叶斯概率模型 支持向量机 speech recognition relevance vector machine vector quantization Bayesian statistical model support vector machine
  • 相关文献

参考文献8

  • 1Lawrence R.Rabiner,A tutorial on hidden markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77(2):257-286.
  • 2Tipping,Michael E.Sparse bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1:211-244.
  • 3苏毅,吴文虎,郑方,等.基于支持向量机的语音识别研究[C].第六届全国人机语音通讯学术会议,深圳,2001.
  • 4杨成福,章毅.相关向量机及在说话人识别应用中的研究[J].电子科技大学学报,2010,39(2):311-315. 被引量:13
  • 5杨树仁,沈洪远.基于相关向量机的机器学习算法研究与应用[J].计算技术与自动化,2010,29(1):43-47. 被引量:56
  • 6Campbell J P.Speaker recognition:a tutor[J].Proc.IEEE,1997,85(9):1 437-1 462.
  • 7李雪耀,林娟,杨崇林.舰船指挥舱室强噪声环境下语音识别[J].船舶工程,1999,21(2):50-53. 被引量:2
  • 8Tzekas D,Likas A,Galatsanos N.Sparse bayesian modeling with adaptive kernel learning[J/OL].IEEE transactions on neural networks/apublication of the IEEE Neural Networks Council,2009.

二级参考文献28

  • 1张德祥,高清维,陈军宁.Single Channel Speech Enhancement by De-noising Using Stationary Wavelet Transform[J].Journal of Electronic Science and Technology of China,2006,4(1):39-42. 被引量:2
  • 2杨子云 徐近霈.高噪环境下命令语音识别的特殊方法.计算机智能接口与智能应用论文集[M].-,1993..
  • 3CAMPBELL J P. Speaker recognition: a tutorial[J]. Proc IEEE, 1997, 85(9): 1437-1462.
  • 4CAMPBELL W M, STUR/M D E, REYNOLDS D A. Support vector machines using GMM supervectors for speaker verification[J]. IEEE Signal Processing Letters, 2006, 13(5): 308-311.
  • 5REYNOLDS D A, QUATIERI T F, DUNN R. Speaker verification using adapted gaussian mixture models[J]. Dig Signal Process, 2000, 10(1-3): 19-41.
  • 6WAN V. Speaker verification using support vector machines [D]. Sheffield, U.K: Univ Sheffield, 2003.
  • 7KINNUEN T. Spectral features for automatic textindependent speaker recognition[D]. Joensuu, Finland: Univ Joensuu, 2003.
  • 8BIMBOT F, MAGRIN C I, MATHAN L. Second-order statistical measures for text-independent speaker identification[J]. Speech Commun, 1995, 17(1-2): 177-192.
  • 9TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
  • 10VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.

共引文献74

同被引文献44

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部