期刊文献+

基于多重核的稀疏表示分类 被引量:5

Multiple Kernel Sparse Representation-Based Classification
下载PDF
导出
摘要 稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了两种自动更新方式并进行了分析与比较.在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性. Sparse representation based classification (SRC) and kernel methods are applied in many pattern recognition prob-lems .In order to improve the classification accuracy ,we propose multiple kernel sparse representation based classification (MK-SRC) .A fast optimization iteration method to solve sparse coefficients and the associated convergence proof to global optimal solu-tion are given .In order to update the kernel weights of MKSRC ,two different updating methods and the associated comparison are given .The experimental results on three face image databases show the superiority of the proposed multiple kernel sparse representa-tion based classification .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1807-1811,共5页 Acta Electronica Sinica
基金 国家自然科学基金项目(No.61202228 No.61073116) 高等学校博士科学点专项科研基金联合资助课题(No.20103401120005) 安徽省高校自然科学研究重点项目(No.KJ2012A004)
关键词 稀疏表示分类(SRC) 核方法 多重核 核权重 模式识别 kernel method multiple kernel kernel weight pattern recog-nition
  • 相关文献

参考文献17

  • 1J Wright,A Y Yang,A Ganesh,S S Saslry,Yi Ma. Robust face recognition via sparse representation[J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210 - 227.
  • 2B Scelkopf, A Smola, K R Mtiller. Nonlinear component analy- sis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5) : 1299 - 1319.
  • 3Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernbard Scholkopf, Klaus-Robert Muller. Fisher discriminant analysis with kernels[A]. Proceedings of the 1999 IEEE Signal Pro- cessing Society Workshop on Neural Networks for Signal Pro- cessing IX [C]. New York: IEEE Signal Processing Society, 1999.41 - 48.
  • 4J Lu, K N Plataniotis, A N Venetsanopoulos. Face recognition using kernel direct discriminant analysis algodthrns[J]. IEEE. Transactions on Neural Networks,2003,14( 1 ) : 117 - 126.
  • 5Andreas Argyriou, Raphael Hauser, Charles A Micchelli, Massi- miliano Ponlil. A DC-programming algorithm for kernel selec- tion[A]. Wi/liam Cohen. Proceedings of the 23rd International Conference on Machine Leaming[C] .New York:ACM,2006. 41 - 48.
  • 6John Shawe-Taylor, Nello Oislianini. Kernel Methods for Pat- tern Analysis [M]. United Kingdom: Cambridge University Press, 2004.25 - 45.
  • 7Qiang Wu, Yiming Ying, Ding-Xuan Zhou. Multi-kernel regu- larized classifiers [J]. Journal of Complexity, 2007,23 ( 1 ) : 108 - 134.
  • 8M Wu, B Scb'lkopf, G Balr. A direct method for building sparse kernel learning algodthms[J]. The Journal of Machine Learning Research, 2006,7 (4) : 603 - 624.
  • 9Andreas Argyriou, Charles A Micchelli, Massimiliano Ponlil. lemming Convex Combinations of Continuously Parameterized Basic Kernels [M]. Berlin Heidelberg: Springer, 2005. 338 - 352.
  • 10Jun Yin, Zlaonghua Liu, Zhong Jin, Wankou Yang. Kernel sparse representation based classification [J]. Neurocomput- ing,2012,77(1) : 120 - 128.

同被引文献62

  • 1郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 2JOLLIFFE I T. Principal component analysis [M].Berlin, Germany: Springer-Verlag, 1986: 111-137.
  • 3BELHUMEUR P N, HESPANHA J P, KRIENGMAN D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 1997, 19(7): 711-720.
  • 4TENENBAUM J B, Silva V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000, 290: 2319-2323.
  • 5BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation, 2003, 15(6): 1373-1396.
  • 6HE X, CAI D, YAN S, et al. Neighborhood preserving embedding [C] ∥Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2005: 1208-1213.
  • 7HE X, YAN S, HU Y, et al. Learning a locality preserving subspace for visual recognition [C] ∥Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2003: 385-392.
  • 8YU W, TENG X, LIU C. Face recognition using discriminant locality preserving projections[J].Image and Vision Computing, 2006, 24(3): 239-248.
  • 9WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 10WRIGHT J, MA Y, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE, 2010, 98(6): 1031-1044.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部