期刊文献+

基于分级显著信息的空间编码方法 被引量:5

Spatial Encoding Based on Hierarchical Salient Information
下载PDF
导出
摘要 传统的Bag of Words模型检索方法并不具备局部特征间的空间关系,因此影响检索性能.本文提出了基于分级显著信息的空间编码方法.通过分层次的提取显著区域并对每个显著区域内的特征点进行空间编码.目的是探索特征间的空间关系,并根据分级显著信息提高特征间的相关性.在几何验证过程中,本文通过任意三点间的角度编码和位移编码构成的空间编码方法完成图像对之间的空间关系匹配,同时根据图像各个区域间的显著程度赋予该区域空间关系匹配得分相应权重,得到最终的几何得分,重新排列检索结果.实验结果表明本文提出的方法既改善了最终检索结果的精确度又降低了几何验证阶段的计算时间. The traditional model“Bag of Words”does not capture the spatial relationship among local features ,thus affecting the retrieval performance .Hence ,the spatial encoding method based on hierarchical salient information is proposed ,which aims at fully exploring the geometric context of all visual words in images and increasing the discriminative power of the features based on hierarchical salient information .We propose a new encoding method in the geometric verification step .The spatial layout of every 3 points within a certain salient area will be represented by angle encoding and location encoding ,meanwhile we sum all spatial matching scores with weights based on hierarchical salient information to generate the final ranking list .Experimental results prove that our scheme improves the retrieval accuracy significantly and reduces the computing time during the geometric verification step .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1863-1867,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.6110115) 吉林省科技发展计划(No.20101504)
关键词 图像检索 BAG of Words模型 分级显著性信息 几何角度编码 几何位移编码 image retrieval bag of words model hierarchical salient information angle encoding location encoding
  • 相关文献

参考文献18

  • 1陈慧中,陈永光,景宁,陈荦,王钧.基于显著区域的月球影像内容特征研究[J].电子学报,2012,40(5):911-919. 被引量:3
  • 2黄霞.基于本体和奇异值分解的图像数据索引查询算法[J].电子学报,2014,42(2):288-291. 被引量:2
  • 3Zheng L, Wang S, Zhou W, Tian Q. Bayes merging of multiple vocabularies for scalable image retaieval[A]. Proceedings of the 2014 IEEE International Conference on Computer Vision and Pattern Recognition [C]. Columbus, OH, USA: IEEE, 2014. 4321 - 4328.
  • 4Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos[A]. Proceedings of the 2003 9th IEEE Intemational Conference on Computer Vision[C]. Nice, France: IEEE,2003.1470 - 1477.
  • 5Lowe D G. Distinctive image features from scale-invariant key- points[J]. International Journal of Computer Vision, 2004, 60 (2) :91 - 110.
  • 6Lazebnik S, Schmid C,Ponce J. Beyond bags of features: Spa- tial pyramid matching for recognizing natural scene categories[A]. Proceedings of the 2006 mEE Computer Society Confer- ence on Computer Vision and Pattern Recognition Workshops [C] .New York, NY, USA: IF.F.E, 2006.2169 - 2178.
  • 7Wu Z, Ke Q, Isard M, Sun J. Bundling features for large scale partial-duplicate web image search [A]. Proceedings of the 2009 mEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.25- 32.
  • 8Hu S. Region-based partial-duplicate image retrieval[A]. Pro- ceedings of the 2012 International Conference on Industrial Control and Electronics Engineering[C]. Xi' an, China: IEEE, 2012. 1521 - 1524.
  • 9Perd' och M, Chum O, Matas J. Efficient representation of local geometry for large scale object retrieval[A] .Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.9 - 16.
  • 10Zhou W,Li H, Lu Y, Tian Q. Large scale image search with geometric coding[A]. Proceedings of the 2011 ACM Multi- media Conference and Co-Located Workshops [C]. Scotts- dale,AZ,USA:ACM,2011.1349 - 1352.

二级参考文献28

  • 1吴楠,宋方敏.一种基于图像高层语义信息的图像检索方法[J].中国图象图形学报,2006,11(12):1774-1780. 被引量:13
  • 2程刚.一种基于形状的图像相似性检索方法[J].合肥工业大学学报(自然科学版),2007,30(2):148-150. 被引量:3
  • 3韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5
  • 4Bay S H, Tuytelaars T, Gool L V. Surf: Speeded Up Robust Features[ A]. Proceedings of European Conference on Comput- er Vision[C]. Graz, Austria: Springer Press,2006.404 - 417.
  • 5Tian Q, Wu Y,Huang S. Combine User Defined Region-Of-In- terest and Spatial Layout for Image Retrieval[ A]. Proceedingsof International Conference on Imaging Processing [ C ]. Van- couver, Canada: IEEEXplore Press,2000.746 - 749.
  • 6Carson C, Belongie S, Greenspan H, Malik J. Blobworld: Image Segmentation Using Expectation-maximization and Its Applica- tion to Image Querying[ J]. 1EEE.R Transaction on Pattern Ana- lyze and Machine Intelligent,2002,24(8) : 1026 - 1038.
  • 7Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos[ A] .Proceedings of International Conference on Computer Vision[ C]. Nice, France:IEEExplore Press,2003, (2) : 1470 - 1477.
  • 8Hurtut T, Gousseau Y, Schmitt F. Adaptive Image Retrieval Based on The Spatial Organization of Colors[ J]. Computer Vi- sion and Image Understanding, 2005,112 (2) : 101 - 113.
  • 9Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features:Spa- tial Pyramid Matching for Recognizing Natural Scene Cate- gories[ A ]. Proceedings of IF, IEEE Conference on Computer Vi- sion and Pattern Recognition[ C]. New York, USA: 1E, EExplore Press,2006.2167 - 2178.
  • 10Liu Y, Zhang D-S, Liu G-J. Region-based Image Retrieval with High-level Semantics Using Decision Tree Leanling[ J]. Pattern Recojhlaition, 2008,41 (8) : 2554 - 2570.

共引文献3

同被引文献33

  • 1CHEN Q, LI J, LU G, et al. Clothing Retrieval Based on Image Bundled Features [ C ]////Cloud Computing and IntelligentSystems (CCIS), 2012 IEEE 2nd International Conference on. Hangzhou: IEEE, 2012, 2: 980-984.
  • 2YAMAGUCHI K, KIAPOUR M H, ORTIZ L E, et al. Parsing Clothing in Fashion Photographs [ C ] // IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI : [ s. n. ], 2012 : 3570-3577.
  • 3DATI'A R, JOSHI D, LI J, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age [ J ]. ACM Computing Surveys, 2008, 40 (2) : 5-8.
  • 4LOWED G. Distinctive Image Features from Scale-Invariant Keypoints [ J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 5SIVIC J, ZISSERMAN A. Video Google: A Text Retrieval Approach to Object Matching in Videos [ C ]//Proceedings of 9th IEEE International Conference on Computer Vision. Nice, France : [ s. n. ], 2003 : 1470-1477.
  • 6ZHENG L, WANG S, LIU Z, et al. Packing and Padding : Coupled Multi-Index for Accurate Image Retrieval [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Colubums, OH: [ s. n. ], 2014: 1947-1954.
  • 7ZHAO H, LI Q, LIU P. Hierarchical Geometry Verification via Maximum Entropy Saliency in Image Retrieval [ J ]. Entropy, 2014, 16(7): 3848-3865.
  • 8ZHOU W, LI H, LU Y, et al. Sift Match Verification by Geometric Coding for Large-Scale Partial-Duplicate Web Image Search [ J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2013, 9( 1 ) : 1-18.
  • 9CHEN Yanzhi, LI Xi, ANTHONY DICK, et al. Ranking Consistency for Image Matching and Object Retrieval [ J ]. Pattern Recognition, 2014, 47 (3) : 1349-1360.
  • 10ZHANG Lining, WANG Lipo, LIN Weisi, et al. Geometric Optimum Experimental Design for Collaborative Image Retrieval [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 (2) : 346-359.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部