期刊文献+

一种规则变量节点度LT Codes编码方案 被引量:6

A Novel Encoding Scheme for Regular Variable-Node Degree LT Codes
下载PDF
导出
摘要 LT Codes差错平台(Erasure Floor)由变量节点的最小度决定,规则变量节点度LT Codes能够最大化变量节点的最小度,从而降低LT Codes的差错平台.该文提出一种新的规则变量节点度LT Codes编码方法,该编码方法省去了现有方法中对变量节点度值查找表的排序操作,降低了现有方案的编码复杂度;通过对度分布的修正增加低度校验节点,使得规则变量节点度LT Codes解码瀑布区域(雪崩区域)提前.仿真结果表明该文方法与现有方法相比有效减少了编码时间,降低了成功解码所需的平均传输开销,加快了误符号率收敛速度. The erasure floor of LT Codes is mainly determined by the minimum degree of variable-nodes.Regular variable-node degree LT Codes can maximize the minimum degree of variable-nodes and improve the erasure floor of LT Codes.In this paper,a novel encoding scheme for regular variable-node degree LT Codes is proposed.Compared w ith existing methods,the proposed scheme is lightweight due to the elimination of the sorting operations involved in the look- up table.Meanwhile,by adding check nodes with low degree through modifying the degree distribution,the waterfall area( avalanche area)in decoding regular variable-node degree LT Codes is improved.Simulation results show that this scheme reduces the encoding time and the average overhead,and accelerates the convergence rate of symbol error rate curve efficiently.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第10期1918-1924,共7页 Acta Electronica Sinica
基金 高等学校博士学科点专项科研基金(No.20120041110011) 中央高校基本科研业务费专项资金(No.DUT13JS09 No.DUT14QY04) 国家自然科学基金(No.61172058 No.61301130 No.61303210)
关键词 喷泉码 规则变量节点度LT CODES 差错平台 度分布 fountain code regular variable-node degree LT codes erasure floor degree distribution
  • 相关文献

参考文献16

  • 1M Luby. LT Codes [A] .Proceedings of the 43rd Annual IEEESymposium on Foundations of Computer Science[ C]. Vancou- ver, Canada: IEEE,2002.271 - 280.
  • 2朱宏鹏,张更新,李广侠.卫星数据广播分发系统中LT码的研究[J].通信学报,2010,31(7):122-127. 被引量:5
  • 3J H Sorensen, P Popovski, J Ostergaard. Design and analysis of LT codes with decreasing ripple size[J]. IEEE Transactions on Communications,2012,60(11) :3191 - 3197.
  • 4N Rahnavard, B N Vellambi, F Fekri. Rateless codes with un- equal error protection property [J].IEEE tions on Infor- marion Theory,2007,53(4) : 1521 - 1532.
  • 5D Sejdinovic, D Vukobratovic, A Doufexi, et al. Expanding window fountain codes for unequal error protection[J]. IEEE Transactions on Communications,2009,57(9):2510-2516.
  • 6S S Arslan, P C Cosman, L B Milstein. Generalized unequal er- ror protection LT Codes for progressive data transmission[J]. IEEE Transactions on Image Processing, 2012,21 (8):3586- 3597.
  • 7S Ahmad, R Hamzaoui, M M A1-Aaidi. Unequal error protec- tion using fountain codes with applications to video communi- cation[J]. IEEE Transactions on Mullimedia, 2011,13 ( 1 ) : 92 - 101.
  • 8H T Lim, E K Joo. Nonuniform encoding and hybrid decoding schemes for equal error protection of rateless codes [J]. ETRIJoumal,2012,34(5):719 - 726.
  • 9I Hussain,X Ming,L K Rasmussen. Error floor analysis of LT Codes over the additive white gaussian noise channel[ A]. Pro- ceedings of IEEE Global Telecommunications Conference[ C]. Houston,USA: IEEE,2011.1 - 5.
  • 10I Hussain,M Xiao,L K Rasmussen, et al.Design of spatially- coupled rateless codes[ A] .Proceedings of IEEE 23rd Interna- tional Symposium on Persorud Indoor and Mobile Radio Com- municatious[ C]. Sydney, NSW: IEEE, 2012. 1913 - 1918.

二级参考文献47

  • 1张更新,张有志,周坡.卫星数据分发系统中的分组级FEC技术性能分析[J].电子与信息学报,2006,28(1):112-115. 被引量:7
  • 2张更新 朱宏鹏 谢智东.数字喷泉技术及其在数据分发系统中的应用.现代军事通信,2007,15(1):7-11.
  • 3P Elias.Coding for two noisy channels[A].Proc.Third London Symp.Information Theory[C].London,U.K.:Buttersworth's Scientific Publications,1955.61-76.
  • 4J Blomer,M Mitzenmacher,A Shokrollahi.An xor-based erasure-resilient coding scheme[DB/OL].ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-048.pdf,ICSI Technical Report,No.TR-95048,1995.
  • 5L Rizzo.Effective erasure codes for reliable computer communication protocols[J].ACM Computer Communication Review,1997,27(2):24-36.
  • 6L Rizzo.On the feasibility of software FEC[DB/OL].DETT Technical Report LR-970131,http://www.iet.unipi.it/ -luigi/softfec.ps,1997.
  • 7F J MacWilliams,N J A Sloane.The Theory of Error-Correcting Codes[M].North Holland:Amsterdam,1977.
  • 8S Reed,G Solomon.Polynomial codes over certain finite fields[J].Journal of the Society for Industrial and Applied Mathematics,1960,8:300-304.
  • 9M Luby,M Mitzenmacher,M Shokrollahi,Daniel Spielman.Practical loss-resilient codes[A].Proceedings of the TwentyNinth Annual ACM Symposium on Theory of Computing[C].El Paso:Texas,USA,1997.150-159.
  • 10J W Byers,M Luby.M Mitzenmacher.A digital fountain approach to reliable distribution of bulk data[A].Proceedings of the ACM SIGCOMM'98 conference on Applications,technologies,architectures,and protocols for computer communication[C].Canada:Vancouver 1998,28(4):56-67.

共引文献42

同被引文献50

  • 1Byers J W, Luby M, Mitzenmacher M. A digital fountain approach to asynchronous reliable multicast[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(8) : 1528 - 1540.
  • 2Tran T, Anpalagan A, Hyung Y K. Multi-hop cooperative transmission using fountain codes over Rayleigh fading channels[J]. Journal of Communications and Networks, 2012,14 (3) : 267 - 272.
  • 3James A, Madhukumar A S, Kurniawan E, et al. Performance analysis of fountain codes in multihop relay networks[J]. IEEE Trans. on Vehicular Technology ,2013,62(9) :4379 - 4391.
  • 4Luby M. LT codes[C]// Proc. of the 43rd Annual IEEE Sym- posium on Foundations of Computer Science, 2002 : 271 - 280.
  • 5Yen K K, Liao Y C, Chen C L, et al. Modified robust soliton distribution(MRSD) with improved ripple size for LT codes[J]. IEEE Communications Letters, 2013, 17(5) : 976 - 979.
  • 6Khaled F H, Shahram Y. Improved systematic fountain codes in AWGN channel[C]//Proc, of the 13th Canadian Workshop on Information Theory, 2013 : 148 - 152.
  • 7Sorensen J H, Popovski P, Ostergaard J. Design and analysis of LT codes with decreasing ripple size[J]. IEEE Trans. on Com- munications, 2012, 60(11):3191-3197.
  • 8Yue G S, Uppal M M, Wang X D. Doped LT decoding with ap- plication to wireless broadcast service[C]//Proc, of the IEEE International Conference on Communications, 2011 : 1 - 5.
  • 9Sorensen J H, Popovski P, Ostergaard J. UEP LT codes with intermediate feedback [J]. IEEE Communications Letters, 2013, 17(8):1636-1639.
  • 10Namjoo E, Aghagolzadeh A, Museviniya J. A new rateless code with unequal error protection property[J]. Computers and Electrical Engineering, 2013, (39): 1980 - 1992.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部