期刊文献+

复杂场景下结合SIFT与核稀疏表示的交通目标分类识别 被引量:9

Traffic Object Recognition in Complex Scenes Based on SIFT and Kernel Sparse Representation
下载PDF
导出
摘要 针对复杂场景下的交通目标分类识别难点,提出一种基于尺度不变特征转换(SIFT)与核稀疏表示的分类识别算法.该算法首先利用SIFT分别提取训练样本和待测目标局部特征信息,通过核方法将特征样本映射到核空间,构建过完备字典,最后通过待测目标在字典中的稀疏度与重构误差对交通目标类别进行判定.同时,分析了随机投影下的核稀疏表示分类与特征维数之间的关系.实验结果表明,与SVM、稀疏表示分类(SRC)相比,该方法增强了交通目标特征层的类判别能力,具有较好的识别率和鲁棒性. A novel approach based on scale-invariant feature transform( SIFT) and kernel sparse representation for traffic object recognition in complex traffic scenes is proposed in this paper. First,SIFT is introduced for feature extraction from samples and test targets,respectively. The features are mapping to the kernel space,then we construct an over-complete dictionary based on kernel sparse representation,traffic objects are recognized by computing sparsity and reconstruction residuals in the dictionary. We also analyze the relationship between recognition rate and dimensionality reduction of the SIFT descriptor using random projection. Experiment results show that the proposed approach enhances the class discriminant ability using traffic features with higher recognition preciseness and robustness in complex traffic scenes compared with SVM,SRC.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2129-2134,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61301027 No.61375015 No.11274226)
关键词 核稀疏表示 尺度不变特征转换 交通目标识别 压缩感知 随机投影 kernel sparse representation scale-invariant feature transform(SIFT) traffic object recognition compressive sensing random projection.
  • 相关文献

参考文献23

  • 1朱明旱,罗大庸,易励群.一种序列的加权kNN分类方法[J].电子学报,2009,37(11):2584-2588. 被引量:15
  • 2Liu Zhoufeng, Liao Liang, Zhang Yanning. Image classification via nearest subspace and two-dimensional underdetermined ran- dom projection[ A]. Proceedings of 7th IEEE Conference on In- dustrial Electronics and Applications (IC1EA) [ C]. Singapore: IEEE, 2012.231 - 236.
  • 3Z Chen, N Pears, M Freeman, Austin J. Road vehicle classifica- tion using Support Vector Machines[ A ]. Proceedings of IEEEInternational Conference on Intelligent Computing and Intelli- gent Systems (ICIS) [ C] Shanghai: 1EEE, 2009.214 - 218.
  • 4M Duarte, Y Hu. Vehicle classification in distributed sensor networks[J]. Journal of Parallel and Distributed Computing, 2004,64(7) :826- 838.
  • 5陈曦,靳东明,李志坚.一种多分辨率组合的模糊神经网络分类器[J].电子学报,2002,30(6):928-933. 被引量:3
  • 6李曙光,王海涛,凌杰.用模糊方法对车型进行模式识别[J].西安公路交通大学学报,2000,20(2):81-83. 被引量:11
  • 7DL Donoho. Compressed sensing[J]. IEEE Transaction on In- formation Theory,2006,52:1289 - 1306.
  • 8E Cand:s, M Wakin. An introduction to compressive sampfing [J]. IEEE Signal Processing Magazine, 2008,25(2) : 21 - 30.
  • 9J Wright, AY Yang, A Ganesh, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210 - 227.
  • 10X T Yuan, S Yan. Visual classification with multi-task joint sparse representation[ A]. Proceedings of IF_EE Conference on Computer Vision and Pattern Recognition (CVPR) [ C ]. San Francisco: IE.F.E, 2010. 3493 - 3500.

二级参考文献39

  • 1陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:52
  • 2刘明,袁保宗,唐晓芳.证据理论k-NN规则中确定相似度参数的新方法[J].电子学报,2005,33(4):766-768. 被引量:8
  • 3李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 4徐伟,王朔中.基于视频图像Harris角点检测的车辆测速[J].中国图象图形学报,2006,11(11):1650-1652. 被引量:29
  • 5T M Cover, P E Hart. Nearest neighbor pattern classification [J]. IEEE Trans. on Information Theory, 1967, 13( 1 ):21 - 27.
  • 6Y Yang, X Lin. A re-examination of text categorization methods[ A ]. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval [C]. New York: ACM, 1999,42 - 49.
  • 7Li Baoli, Chen Yuzhong, Yu Shiwen. A comparative study on automatic categorization methods for Chinese search engine [A]. Proceedings of the Eighth Joint International Computer Conference[ C ]. Hangzhou: Zhejiang University Press, 2002. 117 - 120.
  • 8G Gora, A Wojna. A classifier combining rule induction and k- NN method with automated selection of optimal neighbourhood [ A ]. Proceedings of the Thirteenth European Conference on Machine Learning [C]. Heidelberg: Springer Berlin, 2002, 2430:111 - 123.
  • 9C D' Amato, D Malerba, F Esposito, et al. Extending the k- nearest neighbour classification algorithm to symbolic objects [A]. Atti del Convegno Intermedio della Societa Italiana di Statisfica "Analisi Statisfica Multivariata per le scienze economico-sociali,le scienze naturali e la tecnologia" [C]. Italia: Napoli, 2003.
  • 10W Hechenbichler, K Schliep. Weighted k-nearest-neighbor techniques and, ordinal classification [OL]. http://epub. ub.uni-muenchen.de/1769/, 2007-4-10/2008-9-12.

共引文献71

同被引文献67

  • 1李科,王润生,王程.一种用于飞机型号识别的树分类器方法[J].计算机工程与科学,2006,28(11):136-139. 被引量:8
  • 2唐晶磊,景旭,何东健.基于BP神经网络的葡萄干分级技术的研究[J].农机化研究,2007,29(11):51-53. 被引量:11
  • 3胡颖,王爽,侯彪,焦李成.基于SWBCT和投影特征的遥感目标识别[J].红外与毫米波学报,2007,26(6):451-455. 被引量:5
  • 4WU Yi,LIM J,and YANG Minghsuan.Object tracking Benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(6):1442-1456.
  • 5WRIGHT J,MA Yi,MAIRAL J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044.
  • 6MEI X and LING H.Robust visual tracking using L1 minimization[C].2009 IEEE 12th International Conference on Computer Vision,Kyoto,2009:1436-1443.
  • 7BAO Chenglong,WU Yi,LING Haibin,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Providence,RI,USA,2012:1830-1837.
  • 8ZHONG Wei,LU Huchuan,and YANG Minghsuan.Robust object tracking via sparse collaborative appearance model[J].IEEE Transactions on Image Processing,2014,23(5):2356-2368.
  • 9WANG N and YEUNG D Y.Learning a deep compact image representation for visual tracking[C].Advances in Neural Information Processing Systems,Nevada,2013:809-817.
  • 10GAO Jin,LING Haibin,HU Weiming,et al.Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M].Computer Vision-ECCV 2014,Zurich:Springer International Publishing,2014:188-203.

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部