期刊文献+

基于神经网络的公路工程造价预测模型 被引量:11

Based on the model of BP neural network to predict the project cost of highway
下载PDF
导出
摘要 文章对高速公路的工程特征进行全面的分析和筛选,确定了7个对公路工程造价影响较大的工程特征,使其作为神经网络预测模型的输入向量,随之构建了基于BP神经网络的高速公路工程造价预测模型,最后结合MATLAB神经网络工具箱对程序进行设计,并选取已完工程为实例。通过对模型的训练、修正以及实例验证,证明BP神经网络可以有效提高预测的精确度,具有较强的实用价值。 Based on the principle of BP neural network in and on the analysis of the characteristics of highway engineering, this paper identified seven engineering characteristics as the input vector of the neural network, build the highway engineering cost prediction model is based on BP neural network, combined with MATLAB neural network toolbox to design, and has the engineering as an example. By training, correction, and to verify the model, it is proven that BP neural network can effectively improve the accuracy of the prediction, has very good practical value.
出处 《河北工程大学学报(自然科学版)》 CAS 2014年第4期102-104,共3页 Journal of Hebei University of Engineering:Natural Science Edition
关键词 公路工程 BP神经网络 造价预测 highway engineering BP neural network cost prediction
  • 相关文献

参考文献5

二级参考文献17

  • 1王元庆,付建广,周伟.公路工程造价指数的编制方法及其应用[J].公路,2004,49(9):81-85. 被引量:26
  • 2郭颖.灰色预测在公路工程造价控制中的应用[J].东北林业大学学报,2007,35(6):94-95. 被引量:8
  • 3邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2001..
  • 4Tarek Hegazy,and Amr Ayed,Neural Network Model for Parametric Cost Estimation of Highway Projects[J].Journal of Construction Engineering and Management 1998(5,6):210-216.
  • 5Mohamed Attalla and Tarek Hegazy,Predicting Cost Deviation in Reconstruction Projects:Artificial Networks versus Regression[J].Journal of Construction Engineering and Management,ASCE,2003(7,8):405-411.
  • 6Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 7L.J.Cao.Francis E.H.Tay.Support Vector Machine With Adaptive Parameters in Financial Time Series Forecasting.IEEE Transaction on Neural Network.2003(6):1 506-1 518.
  • 8Theodore B T,Huseyin I.Support Vector Machine for Regression and Application to Financial Forecasting.Proceedind of the IEEE-INNS-ENNS International Ioint Conference on Neural Network,2000(6):348-353.
  • 9Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letter,1999(3):293-300.
  • 10贺巍巍,郑力,高本河.供应商选择多层次熵权综合评价法研究[J].北京交通大学学报(社会科学版),2007,6(3):34-38. 被引量:14

共引文献23

同被引文献66

引证文献11

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部