期刊文献+

考虑输入受限的水下滑翔机前馈控制设计 被引量:4

Feedforward Control Design for Autonomous Underwater Gliders Under Input Constraints
下载PDF
导出
摘要 自主式水下滑翔机是一类浮力驱动的无人装备,其控制系统对滑翔机的功能实现至关重要。考虑控制输入受限,以具有不稳定内部动态的水下滑翔机动力学系统为对象,构造前馈控制算法。这种前馈控制方法将有限时间间隔内的转换控制任务视为两点边界值问题,并将输入受限直接并入两点边界值问题中求解。仿真结果表明,在输入受限的情况下,所设计的控制系统能对水下滑翔机进行有效控制,为不稳定的内部动态求出有界的、因果的解。在控制输入无约束和控制输入受限的情况下,各状态变量的变化趋势相同,只是控制过程中各状态变量的幅度变化有所差异。 Autonomous underwater gliders are buoyancy-driven unmanned devices whose control systems are vital to the glider functionality. For autonomous underwater gliders with unstable internal dynamics,a feedforward controller under input constraints is presented in this paper. In this design,the finite-time transition control task is treated as a two-point boundary value problem,and the input constraints are directly incorporated into the formulation of the two-point boundary value problem. Simulation results illustrate the effectiveness of the presented control system for the autonomous underwater gliders under input constraints and also show that the proposed system can successfully lead to a causal and bounded solution for the unstable internal dynamics. In the unconstrained case and under input constraints,the trend of each state variable remains the same,while only the amplitude changes over each different state variable.
作者 杨海
出处 《中国舰船研究》 2014年第6期87-91,99,共6页 Chinese Journal of Ship Research
基金 国家自然科学基金资助项目(50979058)
关键词 水下滑翔机 前馈控制 输入受限 非线性系统 underwater glider feedforward control input constraints nonlinear systems
  • 相关文献

参考文献3

二级参考文献38

  • 1许春山,孙兴进,曹广益.一种新的机器人轨迹跟踪滑模变结构控制[J].计算机仿真,2004,21(7):115-118. 被引量:18
  • 2ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seaglider: A long-range autonomous underwater vehicle for oceanographic research [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.
  • 3SHERMAN J, DAVIS R E, OWENS W B, et al. The autonomous underwater glider "Spray" [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.
  • 4WEBB D C, SIMONETTI P J, JONES C P. Slocum: An underwater glider propelled by environmental energy [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
  • 5RUDNICK D L, DAVIS R E, ERIKSEN C C, et al. Underwater gliders for ocean research [J]. Marine Technology Society Journal, 2004, 38(1): 48-57.
  • 6MERCKELBACH L M, BRIGGS R D, SMEED D A, et al. Current measurements from autonomous underwater gliders [C]//IEEE//OES 9th Working Conference on Current Measurement Technology. Piscataway, N J: IEEE Press, 2008: 61-67.
  • 7BACHMAYER R, GRAVER J G, LEONARD N E. Glider control: A close look into the current glider controller structure and future developments [C]//IEEE Oceans 2003. Piscataway, N J: IEEE Press, 2003: 951-954.
  • 8SEO D C, Jo G, CHOZ H S. Pitching control simulations of an underwater glider using CFD analysis [C]// IEEE Oceans 2008. Piscataway, N J: IEEE Press, 2008: 1-5.
  • 9LEONARD N E, GRAVER J G. Model-based feedback control of autonomous underwater gliders [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 633-645.
  • 10WANG Yan-hui, ZHANG Hong-wei, WANG Shu-xin. Trajectory control strategies for the underwater glider [C]//2009 International Conference on Measuring Technology and Mechatronics Automation. Piscataway, N J: IEEE Press, 2009: 918-921.

共引文献14

同被引文献37

引证文献4

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部