期刊文献+

基于相容粒模型和三支决策的图像分类算法 被引量:1

Image Classification Algorithm Based on Tolerance Granular Model and Three-way Decisions
下载PDF
导出
摘要 相容粒空间模型是粒计算理论的主要方法之一,利用粒计算的方法对相容粒及其空间模型的研究已经比较深入,然而在实际图像分类的应用中,面对的问题更为复杂。为了解决现实图像分类中存在的信息有限或信息缺失而造成分类不准确的问题,本文重点研究相容粒模型的分层思想,通过与善于解决以上问题的三支决策理论相结合,形成一种基于相容粒模型和三支决策理论相结合的图像分类算法,并通过仿真实验验证该算法是有效可行的。 Tolerance Granular Model is one of the main methods of granular computing theory, using the method and its model of granular computing to tolerance granular has been deeply studied, however in the practical application of image classification, we face the problem more complicated. In order to solve the inaccurate problems of the realistic image classifi- cation which caused by the information limited or lack, this paper focuses on the research of the layered idea of tolerance granular model, combined with delay decision in the three-way decisions which is good at the above problems, form a kind of image classification algorithm based on tolerance granular model and three-way decisions theory, and the effectiveness of the algorithm is verified by experiment.
出处 《计算技术与自动化》 2014年第4期93-96,共4页 Computing Technology and Automation
基金 国家自然科学基金项目(60873104 61040037) 河南省科技攻关重点计划项目(112102210194)
关键词 相容粒 三支决策 图像分类 tolerance granular Three-way decisions image classification
  • 相关文献

参考文献8

二级参考文献86

  • 1汪华章.基于多尺度及多方向分析的纹理图像检索算法[J].郑州大学学报(理学版),2009,41(1):27-32. 被引量:5
  • 2SKOWRON A. Rough sets in KDD[C]//SHI Zhong-zhi,FALTINGS B,MUSEN M. Proceedings of the 16th World Computer Congress. Beijing :Publishing House of Electronic Industry,2000:1-17.
  • 3SKOWRON A, STEPANIUK J. Tolerance approximation spaces[J]. Fundamenta In{ormatieae, 1996,27 (2/3) : 245- 253.
  • 4SUN Lin,XU Jiu-cheng,LI Shuang-qun. Knowledge reduction based on granular computing from decision information systems[C]//Proceedings of the 5th International Conference on Rough Sets and Knowledge Technology:LNCS Vol 6401. Berlin Heidelberg : Springer-Verlag, 2010 : 46-53.
  • 5Lowe D G. Distinctive Image Features from Scale-Invariant Key- points. International Journal of Computer Vision, 2004, 60(2) : 91 -110.
  • 6Mikolajczyk K, Schmid C. A Performance Evaluation of Local De- scriptors. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2005, 27 (10) : 1615 - 1630.
  • 7Mikolajczyk K, Schmid C. Indexing Based on Scale Invariant Inter- est Points//Proc of the 8th International Conference on Computer Vision. Vancouver, Canada, 2001, I: 525-531.
  • 8Grauman K, Darrell T. Efficient Image Matching with Distributions of Local Invariant Features//Proc of the IEEE Conference on Com- puter Vision and Pattern Recognition. San Diego, USA, 2005, n : 627 - 634.
  • 9Csurka G, Dance C, Willamowski J, et al. Visual Categorization with Bags of Keypoints//Proc of the ECCV International Workshop on Statistical Learning in Computer Vision. Prague, Czech, 2004: 59 - 74.
  • 10Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos// Proc of the International Conference on Computer Vision. Nice, France, 2003, Ⅱ : 1470 - 1477.

共引文献116

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部