期刊文献+

基于ARIMA模型的PM_(2.5)预测 被引量:56

Forecast of PM_(2.5) Based on the ARIMA Model
下载PDF
导出
摘要 PM2.5的精确预测是大气污染评价和治理的关键性工作。本文针对PM2.5浓度变化的时间序列分布特征,结合环境监测站提供的相关数据,应用自回归移动平均模型(ARIMA(p,d,q))预测短期PM2.5的日平均浓度。结果表明:由于PM2.5浓度变化受气象场、排放源、复杂下垫面、理化生过程的耦合等多种因素的影响,不同时段内的变化模式存在巨大差异,因此采用分时段序列预测模型可以提高PM2.5的预测精度;通过将分时段序列模型与灰色GM(1,1)模型和全年时间序列模型的预测结果进行对比,发现该模型预测效果更好。 The accurate forecast of PM2.5is key work of atmospheric pollutant assessment and management.According to the characteristics of time series of concentration chang of PM2.5and with data provided by the environmental monitoring station,this research adopts ARIMA(p,d,q)(Auto-regression Integrated Moving Average)model to forecast the daily average concentration of PM2.5.The results show that there are different patterns in different periods because the daily average concentration of PM2.5 varies greatly with time influenced by meteorological field,emission source,complex underlying surface,physical chemistry reaction and so on.So the paper chooses different models in different periods in order to improve the accuracy of forecast.Compared with the gray model and the annual time series model,the different models in different periods are proved to have better performance.
出处 《安全与环境工程》 CAS 北大核心 2014年第6期125-128,共4页 Safety and Environmental Engineering
基金 国家自然科学基金项目(91324201)
关键词 PM2.5 时间序列 ARIMA模型 预测 PM2.5 time series ARIMA model forecast
  • 相关文献

参考文献8

  • 1Grivas,G.,A.Chaloulakou.Artificial neural network models for prediction of PM10 hourly concentrations,in the Greater Area of Athens[J].Atmospheric Environment,2006,40 (7):1216-1229.
  • 2Paschalidou,A.K.,S.Karakitsios,S.Kleanthous,et al.Forecas ting hourly PM10 concentration in Cyprus through artificial neu ral networks and multiple regression models[J].Environment Pollution Research,2011,18(1):316-327.
  • 3Reilly,P.Time series modeling of global mean temperature for managerial decision-making[J].Journal of Environment Management,2005,76 (1):61-70.
  • 4Jenkins,G.M.,G.C.Riesel.Time Series Analysis:Forecasting and Control[M].NY:Prentice Hall Inc,1994.
  • 5Shumway,R.H.,D.S.Stoffer.Time Series Analysis and It's Applications[M].New York:Springer Science Business Media,2006:79-99.
  • 6Kumar,U.,V.K.Jain.ARIMA forecasting of ambient air pollutants (O3,NO,NO2 and CO)[J].Stochastic Environmental Research and Risk Assessment,2010,24(5):751-760.
  • 7Cobourn,W.G.An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations[J].Atmospheric Environment,2010,44 (25):3015-3023.
  • 8Chelani,A.B.,S.Devotta.Prediction of ambient carbon monox ide concentration using nonlinear time series analysis technique[J].Transportation Research,2007,12 (8):596-600.

同被引文献558

引证文献56

二级引证文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部