期刊文献+

基于多RGBD摄像机的动态场景实时三维重建系统 被引量:5

A Real-Time System for 3D Recovery of Dynamic Scenes Based on Multiple RGBD Imagers
下载PDF
导出
摘要 使用多台基于FPGA嵌入立体计算的RGBD摄像机搭建动态场景实时三维重建系统.RGBD摄像机能够以视频速度输出场景的彩色(RGB)图像及对应的稠密视差(disparity)图像,由视差图像可进一步得到场景的深度图.多台RGBD摄像机运行在统一的外部时钟和控制信号下,可实现对目标场景数据的同步采集.为了提高各视点所获取的场景深度图质量,根据多RGBD摄像机系统视点分布较为稀疏的特点,使用概率密度函数估计的方法进行多视点深度图的融合.融合后的深度图由PC集群进行处理,可实时生成所拍摄场景的三维空间点云.实验结果表明,本文系统可以有效地重建包含多个运动目标的大型动态场景. This paper presents a real-time system for 3D recovery of dynamic scenes by using multiple FPGA-based RGBD imagers. The RGBD imager developed in our lab produces color images combined with the corresponding dense disparity maps encoding depth information. Multiple RGBD imagers were externally triggered to sense the 3D world synchronously. To improve the quality of the acquired depth map, a probabilistic method for fusing depth maps from multiple RGBD imagers with sparsely distributed viewpoints was proposed. The fused depth maps of a dynamic scene from multiple viewpoints were then streamed to a PC cluster to generate the 3D point cloud of the dynamic scene in real time. Experimental results show that our system is very promising for the 3D recovery of large scale dynamic scenes with multiple moving objects.
作者 段勇 裴明涛
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第11期1157-1162,共6页 Transactions of Beijing Institute of Technology
基金 国家"九七三"计划项目(2012CB720000) 国家"八六三"计划项目(2009AA01Z323)
关键词 立体视觉 多视点实时三维重建 深度图融合 stereo vision real-time multi-view stereo depth map fusion
  • 相关文献

参考文献14

  • 1Seitz S, Curless B, Diebel J, et al. A comparison and e- valuation of multi-view stereo reconstruction algorithms [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA : IEEE Computer Society, 2006 : 519 - 528.
  • 2Bradley D, Boubekeur T, Heidrieh W. Accurate multi- view reconstruction using robust binocular stereo and surface meshing[C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE Computer Society, 2008: 1-8.
  • 3Curless B, Levoy M. A volumetric method for building complex models from range images[C] // Proceedings of SIGGRAPH. New Orleans, USA: ACM Press, 1996: 303 - 312.
  • 4Li J, Li E, Chen Y, et al. Bundled depth-map merging for multi-view stereo [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Computer Society, 2010: 2769 - 2776.
  • 5Zach C, Pock T, Bischof H. A globally optimal algorithm for robust tv-ll range image integration[C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Computer Society, 2007 : 1 - 8.
  • 6Narayanan P, Rander P, Kanade T. Constructing virtual worlds using dense stereo[C]//Proceedings of IEEE International Conference on Computer Vision. Bombay, India: IEEE Computer Society, 1998:3- 10.
  • 7Merrell P, Akbarzadeh A, Wang L, et al. Real-time visibility-based fusion of depth maps[C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Computer Society, 2007: 1-8.
  • 8Pollefeys M, Nistr D, Frahm J M, et al. Detailed real- time urban 3D reconstruction from video [ J ]. International Journal of Computer Vision, 2008, 78: 143 - 167.
  • 9Zhang G, Jia J, Wong T T, et al. Consistent depth maps recovery from a video sequence [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 : 974 - 988.
  • 10Zhang L, Li B, Jia Y. A practical calibration method for multiple cameras[C] // Proceedings of International Conference on Image and Graphics. Chengdu, China: Institute of Electrical and Electronics Engineers, 2007: 45 - 50.

同被引文献37

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部