摘要
利用环面工具加工过渡曲面时经常发生整体干涉,主要原因是缺乏对复杂环面工具加工复杂曲面时刀位可行域的研究。虽然采用常规的优化方法在大范围内对可行刀位进行搜索是可行的,但是需要耗费大量时间。为了避免刀具与过渡曲面的干涉并同时提高加工效率,研究了一种更加符合此区域结构特点的刀位优化算法,使得叶根过渡曲面得以无干涉地整体宽行加工。通过对典型叶根过渡曲面的可行刀位进行研究,发现其可行域形状为盾形,且行宽最大的刀位位于该盾形区域的两个底部边界上,有时位于该边界的端点上。根据该原理提出一种最优刀位搜索方法——沿着盾形区域底部边界搜索,应用最优化的刀位可行域以获得高的加工效率。以某航空发动机叶片的叶根过渡曲面为例进行了刀位优化计算、仿真和加工实验,验证了该方法在叶根过渡曲面加工中的有效性。
The integral interference happens frequently when machining transitional surfaces using torus tool,the main reason is the lack of the research on the tool position feasible area of complex torus tool in complex surface machining.Although the conventional optimization method may be competent in searching feasible tool position in large area,it is time-consuming.In order to avoid the interference between tool and transitional surface and improve the machining efficiency at the same time,a tool position optimization algorithm that is more suitable for the structure feature of this area is researched,so that the transitional surface can be strip-width maximization machined integrally without interference.Through the research on the feasible tool position of typical blade transitional surface,it is found that the shape of feasible area of tool position is scutellate,and the tool positions with the maximum machining strip width are located on the two bottom boundaries of the scutellate area,sometimes located on the endpoints of the boundaries.According to this principle,an optimal tool position searching method is proposed—searching along the bottom boundaries of the scutellate area,and optimizing the application of feasible area to obtain high machining efficiency.A certain aero-engine blade is taken as an example for calculation of tool position optimization and simulation and machining experiment to verify the validity of this method in machining the transitional surfaces of blade root area.
出处
《航空学报》
EI
CAS
CSCD
北大核心
2014年第12期3470-3479,共10页
Acta Aeronautica et Astronautica Sinica
基金
国家重大科技专项(2013ZX04011031)~~
关键词
曲面加工
环面工具
复杂曲面
刀位优化
可行域
干涉
surface machining
torus tool
sculptured surfaces
tool position optimization
feasible area
interference