期刊文献+

多方计算任务的量子通信复杂度 被引量:2

Quantum Communication Complexity of Multi-Party Computation Task
下载PDF
导出
摘要 假设多个用户分别根据各自持有的函数对共享数据进行计算,用户之间采用互相通信的方式完成一个共同的目标任务。本文基于一个通用的判别函数模型,给出对于上述任务,采用经典最优算法下的经典通信复杂度。然后,以数据库算法为基础,文中构造了适用于前述任务的量子分布式算法,并给出相应的量子通信复杂度。研究表明,量子算法的性能取决于函数定义域与用户数的无穷大阶的差距。量子通信复杂度较之经典情形最多将会有二次级别的降低。 Assume multi parties want to calculate a shared data according to their own function,they have to communi-cate with each other to achieve the common computation task.This paper first presented the classical communication com-plexity of the classical optimal algorithm to achieve this task based on a general discriminant function.Furthermore,a quantum distributed algorithm is proposed for the computation task based on the Grover database search algorithm,and the quantum communication complexity is presented.Our research shows that the performance of this quantum algorithm de-pends on the infinite order gap of the function domain and the users number.It is proved that the quantum algorithm can get a quadratic reduction at most on the performance of communication complexity than the classical algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第12期1473-1478,共6页 Journal of Signal Processing
基金 国家自然科学基金(61271238) 教育部博士点专项科研基金(20060293003)
关键词 量子信号 多用户 通信复杂度 量子算法 quantum signal multi-party communication complexity quantum algorithm
  • 相关文献

参考文献16

  • 1Yao A C. Some complexity questions related to distribu- ted computing[ C ]///Proceedings of the 1 lth Annual ACM Symposium on Theory of Computing, 1979 : 209-213.
  • 2Yao A C. Quantum circuit complexity [ C ]//Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993: 352-361.
  • 3Brassard G. Quantum Communication Complexity [ J ]. Foundations of Physics, 2003, 33( 11 ) : 1593-1616.
  • 4Buhrman H, Cleve R, Massar S, et al. Nonlocality and communication complexity [ J ]. Reviews of Modem Phys- ics, 2010, 82 (1): 665-728.
  • 5Cleve R, Dam W, Nielsen M, et al. Quantum entangle- ment and the communication complexity of the inner prod- uct function [ J ]. Theoretical Computer Science, 2013, 486( 1 ) :11-19.
  • 6Trojek P, Schmid C, Bourennane M, et al. Experimental multipartner quantum communication complexity emplo- ying just one qubit [ J]. Natural Computing, 2013, 12 (1) : 19-26.
  • 7Shor P W. Polynomial time algorithms for prime factoriza- tion and discrete logarithms on a quantum computer [ J ].SIAM Journal of Computing, 1997, 26(5) : 1484-1590.
  • 8Grover L. A fast quantum mechanical algorithm for data- base search [ C ]//Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, 1996: 212-219.
  • 9Grover L. Quantum computers can search rapidly by u- sing almost any transformation [ J ]. Physical Review Let- ters, 1998, 80(19) : 4329-4332.
  • 10Mosea M. Quantum searching, counting and amplitude amplification by eigenvector analysis [ C ]//Proceedings of Randomized Algorithms, Workshop of Mathematical Foun- dations of Computer Science, 1998: 90-100.

二级参考文献9

  • 1Graupe D, Principles of Artificial Neural Networks [ M ]. 2nd. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2007.
  • 2Purushothaman G, Karayiannis N B. Quantum neural net- works (QNNs) : inherently fuzzy feedforward neural net- works [ J ]. Neural Networks, IEEE Transactions on, 1997, 8(3) :679-693.
  • 3Karayiannis N B, Yaohua X. Training Reformulated Ra- dial Basis Function Neural Networks Capable of Identif- ying Uncertainty in Data Classification [ J ]. Neural Net- works, IEEE Transactions on, 2006, 17 (5) : 1222-1234.
  • 4Li J, Li P. Feature difference matrix and QNNs for facial expression recognition[ C]. Control and Decision Confer-ence 2008, Chinese.
  • 5Snyman J. Practical Mathematical Optimization[ M]. New York: Springer, 2005.
  • 6Yuhuan Z, Xiongwei Z, Jinming W, et al. Research on speaker feature dimension reduction based on CCA and PCA[ C]. Wireless Communications and Signal Process- ing (WCSP) , 2010 International Conference on, China.
  • 7杨妍,陈如清,俞金寿.量子神经网络在心电图分类中的应用[J].华东理工大学学报(自然科学版),2009,35(5):788-792. 被引量:3
  • 8盖怀存,张小锋,江泽涛.基于量子神经网络的人脸识别技术研究[J].计算机工程与应用,2010,46(8):187-189. 被引量:10
  • 9冯建利,拱长青.基于多层激励函数量子神经网络的入侵检测研究[J].沈阳航空工业学院学报,2010,27(1):56-59. 被引量:2

共引文献13

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部