期刊文献+

一种NSCT域多聚焦图像融合新方法 被引量:2

A Novel NSCT-Based Technique for Multi-Focus Image Fusion
下载PDF
导出
摘要 针对多聚焦图像融合存在的问题,提出一种基于非下采样Contourlet变换(NSCT)的多聚焦图像融合新方法。首先,采用NSCT对多聚焦图像进行分解;然后,对低频系数采用基于改进拉普拉斯能量和(SML)的视觉特征对比度进行融合,对高频系数采用基于二维Log-Gabor能量进行融合;最后,对得到的融合系数进行重构得到融合图像。实验结果表明,无论是运用视觉的主观评价,还是基于互信息、边缘信息保留值等客观评价标准,该文所提方法都优于传统的离散小波变换、平移不变离散小波变换、NSCT等融合方法。 In order to overcome the shortcoming of the traditional multi-focus image fusion methods, a novel non-subsampled contourlet transform(NSCT) based technique for multi-focus image fusion is proposed. Firstly, the source multi-focus images are decomposed by using the NSCT. Secondly, the low-frequency subband coefficients are fused by the local visual contrast mechanism based Sum-Modified-Laplacian(SML), and the high-frequency subband coefficients are fused by a 2D Log-Gabor energy rule. Finally, the inverse NSCT is employed to reconstruct the fused image. Experimental results demonstrate that the proposed method is better than series of popularly used fusion methods, including discrete wavelet transform, shift invariant DWT, NSCT, etc, in terms of both subjective and objective evaluations.
出处 《图学学报》 CSCD 北大核心 2014年第6期854-863,共10页 Journal of Graphics
基金 国家自然科学基金资助项目(61262034) 教育部科学技术研究重点资助项目(211087) 江西省自然科学基金资助项目(20114BAB21102 20132BAB201025) 江西省教育厅科技资助项目(GJJ14334 GJJ09022) 江西省高校科技落地计划资助项目(KJLD14031)
关键词 多聚焦图像融合 非下采样CONTOURLET变换 Log-Gabor能量 改进拉普拉斯能量和 multi-focus image fusion non-subsampled Contourlet transform Log-Gabor energy sum-modified-Laplacian
  • 相关文献

参考文献24

  • 1Zhang Zhou, Shi Zhenwei, An Zhenyu. Hyperspectral and panchromatic image fusion using unmixing-based constrained normegative matrix factorization [J]. Optik-International Journal for Light and Electron Optics, 2013, 124(13): 1601-1608.
  • 2Miles B, Ben A I, Law M W K, Garvin G, Fenster A, Li Shuo. Spine image fusion via graph cuts [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(7): 1841-1850.
  • 3Liang Junli, He Yang, Liu Ding, Zeng Xianju. Image fusion using higher order singular value decomposition [J]. IEEE Transactions on Image Processing, 2012, 21(5): 2898-2909.
  • 4Yang Yong, Zheng Wenjuan, Huang Shuying. A novel automatic block-based multi-focus image fusion via genetic algorithm [J]. KSII Transactions on Internet and Information Systems, 2013, 7(7): 1671-1689.
  • 5Yang Bing, Li Shutao. Multifocus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892.
  • 6Liu Yipeng, Jin Jing, Wang Qiang, Shen Yi, Dong Xiaoqiu. Region level based multi-focus image fusion using quaternion wavelet and normalized cut [J]. Signal Processing, 2014, 97(4): 9-30.
  • 7Zhang Zhong, Blum R S. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application [J]. Proceeding of the IEEE, 1999, 87(8): 1315-1326.
  • 8李树涛,王耀南,张昌凡.基于视觉特性的多聚焦图像融合[J].电子学报,2001,29(12):1699-1701. 被引量:40
  • 9王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合方法[J].中国图象图形学报,2008,13(1):145-150. 被引量:22
  • 10Chipman L J, Orr T M, Graham L N. Wavelets and image fusion [C]//Intemational Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1995: 248-251.

二级参考文献20

共引文献232

同被引文献19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部