期刊文献+

低检测概率下改进的概率假设密度滤波器 被引量:8

Improved Probability Hypothesis Density Filter with Low Detection Probability
下载PDF
导出
摘要 针对传统多目标概率假设密度(PHD)滤波器在低检测概率情况下跟踪精度低和失跟率高的问题,提出了一种改进的概率假设密度滤波算法。该算法利用高斯混合PHD(GM-PHD)滤波器进行PHD预测和PHD更新,处理过程中通过修正上一拍权值大的高斯项,并在处理当前拍时保证其权值的稳定性,以保证算法的高精度。仿真结果表明,在低检测概率情况下,该算法可较好估计目标数和目标状态。与传统GM-PHD滤波器比,该算法跟踪精度大幅提高。 To solve problems of low tracking accuracy and high probability of target tracking loss with low detection probability for the conventional probability hypothesis density(PHD)filter,an improved PHD(IPHD)filter algorithm is proposed.In the algorithm,the Gaussian mixture PHD(GM-PHD)filter is used to execute PHD prediction and PHD update.In the process,the high accuracy of the proposed algorithm is achieved by revising the Gaussian components with large weight at the previous one time step properly and promising the stability of the weights in the process of the current time step.Simulation results show that in the situation of low detection probability,the algorithm can estimate the target number and target states well compared with the traditional GM-PHD filter,and the tracking accuracy improves largely.
出处 《指挥信息系统与技术》 2014年第6期36-40,共5页 Command Information System and Technology
基金 国家自然科学基金(61374159 61374023 61203233 61203234 61135001) 航空科学基金(20125153027)资助项目
关键词 目标跟踪 低检测概率 概率假设密度(PHD)滤波器 高斯混合PHD滤波器 权值 修正 target tracking low detection probability probability hypothesis density (PHD) filter Gaussian mixture PHD (GM-PHD) filter weight revising
  • 相关文献

参考文献17

  • 1Bar-Shalom Y, Li Xiaorong. Multitarget-multisensor tracking: principles and techniques [M]. Storrs: YBS Publishing, 1995.
  • 2Chang K C, Bar-Shalom Y. Joint probabilistic data as- sociation for multitarget tracking with possibly unre- solved measurements and maneuvers[J]. IEEE Trans-actions on Automatic Control, 1984, 29(7) : 585-594.
  • 3Singer R A, Stein J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]//Proceedings of the 10th IEEE Conference on Decision and Control. Miami Beach: IEEE, 1971 : 171-175.
  • 4Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic da- ta association[J]. IEEE Journal of Oceanic Engineer- ing, 1983,8(3) ; 173-184.
  • 5Blackman S S. Multiple hypothesis tracking for multi- ple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004,19 ( 1 ) ; 5-18.
  • 6庄泽森,张建秋,尹建君.Rao-Blackwellized粒子概率假设密度滤波算法[J].航空学报,2009,30(4):698-705. 被引量:17
  • 7Yin Jianiun, Zhang Jianqiu, Zhuang Zesen. Gaussian- sum PHD filtering algorithms for nonlinear non- Gaussian models[J] Chinese Journal of Aeronautics, 2008, 21(4): 341-351.
  • 8Mahler R P S. Multitarget Bayes filtering via first-or- der multitarget moments[J] IEEE Transactions on Aerospace and Electronic Systems, 2003,39 (4) : 1152- 1178.
  • 9Clark D, Vo B T, Vo B N. Gaussian particle imple- mentations of probability hypothesis density filters-C //Proceedings of 2007 IEEE Conference on Aerospace. Big Sky: IEEE, 2007 : 1-11.
  • 10Mahler R P S. Statistical multisource-multitarget in- formation fusion . Norwood: Artech House,2007.

二级参考文献50

  • 1刘慧霞,梁彦,潘泉,程咏梅.天波超视距雷达多路径Viterbi数据关联跟踪算法[J].电子学报,2006,34(9):1640-1644. 被引量:22
  • 2Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transaction on Signal Processing, 2005, 53(7): 2279 -2289.
  • 3Schon T, Karlsson R, Gustafsson F. The marginalized particle filter in practice[R]. Linkoping: Linkoping University, LiTH-ISY-R 2715, 2005.
  • 4Anderson B D O, Moore J B. Optimal filtering[M]. Engle wood Ciffs, NJ: Prentice-Hall, 1979.
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings F, 1993, 140(2): 107-113.
  • 6Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 7Karlsson R, SchOn T. Complexity analysis of the marginalized particle filter[R]. Linkoping: Linkoping University, LiTHISY-R-2611 , 2004.
  • 8Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3), 613-624.
  • 9Doucet A. On sequential simulation-based methods for Bayes ian filtering[R]. CUED/F INFENG/TR. 310 (1998), 1998.
  • 10Panta K, Vo B, Singh S. Improved probability hypothesis density (PHD) filter for multitarget traeking[C] // Proceedings of the 2005 Third International Conference on Intelligent Sensing and Information Processing. 2005:213- 218.

共引文献30

同被引文献32

  • 1Mahler R.Statistical Multi-source Multi-target Information Fusion[M].Boston,USA:Artech House,Inc.,2007.
  • 2Hoffmann C,Dang T.Cheap Joint Probabilistic Data Association Filters in an Interacting Multiple Model Design[C]//Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.Washington D.C.,USA:IEEE Press,2006:197-202.
  • 3Mahler R.Multi-target Bayes Filtering via First-order Multitarget Moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 4Mahler R.PHD Filters of Higher Order in Target Number[J].IEEE Transactions on Aerospace and Electronic Systems,207,43(4):1523-1543.
  • 5Vo B T,Vo B N,Cantoni A.The Cardinality Balanced Multitarget Multi-Bernoulli Filter and Its Implemen-tations[J].IEEE Transactions on Signal Processing,2009,57(2):409-423.
  • 6Mahler R,Vo B T,Vo B N.CPHD Filtering with Unknown Clutter Rate and Detection Profile[J].IEEE Transactions on Signal Processing,2011,59(1):3497-3513.
  • 7Vo B T,Vo B N,Hoseinnezhad R,et al.Robust MultiBernoulli Filtering[J].IEEE Journal of Selected Topics in Signal Processing,2013,7(3):399-409.
  • 8Ristic B,Vo B T,Vo B N,et al.A Tutorial on Bernoulli Filters:Theory,Implementation and Applications[J].IEEE Journal of Selected Topics in Signal Processing,2013,61(13):3406-3430.
  • 9Schuhmacher D,Vo B T,Vo B N.A Consistent Metric for Performance Evaluation of Multi-object Filters[J].IEEE Transactions on Signal Processing,2008,56(8):3447-3457.
  • 10张昌芳,杨宏文,胡卫东,郁文贤.低数据率条件下的目标跟踪[J].电光与控制,2008,15(7):7-11. 被引量:4

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部