摘要
过去广泛接受#271C50Cl10是由#271C50空笼直接氯化得到.我们通过研究拓扑结构弄清了C50富勒烯之间的相互关系.利用密度泛函理论(DFT)计算从最稳定C50富勒烯#270C50出发,通过氯化和Stone-Wales(SW)转变获得#271C50Cl10.结果表明:氯化后最终产物是热力学最有利的,并且在有氯存在下,SW转变的活化能垒会降低.这些结果可以解释目前的相关实验事实,暗示了#270C50空笼先氯化得到不同#270C50氯化物,再进行两次SW旋转的路径,由于活化能垒更低因而是一条更为可行的路线.
^#271C_50Cl_10 is widely postulated to be a direct chlorination product of cage ^#271C50. We suggest an alternative formation mechanism of ^#271C_50Cl_10, based on the topological relationship of these C_50 fullerenes. Density functional theory (DFT) calculations of the proposed cage transformation pathway in the chlorination of C_50 were performed. The proposed pathway is stimulated by chlorination-promoted fullerene cage transformation, with a low activation barrier. DFT calculations of the Stone-Wales (SW) transformation pathways revealed that the thermodynamically favored rearrangement of other C_50 chlorofullerene into ^#271C_50Cl_10 requires a lower activation energy than that of the pristine carbon cage. This suggested that it is a more effective pathway of chlorinating ^#271C_50Cl_10.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2015年第1期51-55,共5页
Acta Physico-Chimica Sinica
基金
国家自然科学基金(21273177)
国家重点基础研究发展规划项目(973)(2011CB808504)资助~~