期刊文献+

基于最小二乘支持向量机的MIMO线性参数变化模型辨识及预测控制 被引量:8

Identification and model predictive control of LPV models based on LS-SVM for MIMO system
下载PDF
导出
摘要 将现有的面向单输入单输出系统的基于最小二乘支持向量机的参数变化模型辨识算法(SISO-LSSVM-LPV),推广到多输入多输出系统,实现了面向多输入多输出系统的基于最小二乘支持向量机的参数变化模型辨识算法(MIMO-LSSVM-LPV),进一步结合基于遗传算法的预测控制算法(GA-MPC),提出并实现了MIMO-LSSVM-LPV+GA-MPC的建模控制一体化新架构。仿真结果表明,该辨识算法可逼近复杂非线性MIMO系统,辨识精度高,并且保留了线性回归低计算量的优点,结合了GA的MPC可实现最优控制量的在线实时寻优,并取得了良好控制效果。 This paper presents a least-square support vector machine based linear parameter-varying model approach for multiple-input multiple-output nonlinear system (MIMO-LSSVM-LPV). The identified model can be used in the model predictive control scheme combined with genetic algorithm (GA-MPC). The new identification and controlling integration scheme is named MIMO-LSSVM-LPV+GA-MPC. Simulation results show that the identification algorithm can approximate complex nonlinearity with high accuracy while keep the advantage of low computational burden of linear regression. GA based MPC can get the real-time optimal control input and achieve good controlling performance.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第1期197-205,共9页 CIESC Journal
基金 国家重点基础研究发展计划项目(2012CB720500) 国家自然科学基金项目(21076179)~~
关键词 非线性系统 最小二乘支持向量机 线性参数变化模型 多输入多输出 模型预测控制 过程控制 参数识别 nonlinear system linear parameter-varying (LPV) model process control parameter identification
  • 相关文献

参考文献18

  • 1Yu Zhao, Huang Biao, Su Hongye, Chu Jian. Prediction error method for identification of LPV models [J]. Journal of Process Control, 2012, 22 (1): 180-193.
  • 2Shamma Jeff S, Michael Athans. Analysis of gain scheduled control for nonlinear plants [J]. Automatic Control, IEEE Transactions on,1990,35(8):898-907.
  • 3Previdi F, Lovera M. Identification of a class of non-linear parametrically varying models [J]. International Journal of Adaptive Control and Signal Processing, 2003, 17 (1): 33-50.
  • 4Verdult Vincent, Michel Verhaegen. Subspace identification of multivariable linear parameter-varying systems [J]. Automatica, 2002, 38 (5): 805-814.
  • 5T6th Roland, Peter S C Heuberger, Paul M J Van den Hof. Asymptotically optimal orthonormal basis functions for LPV system identification [J]. Automatica, 2009, 45 (6): 1359-1370.
  • 6Zhu C, Xu Z H. A method of LPV model identification for control//Proceedings of 17th IFAC World Congress [C]. Seoul, Korea, 2008.
  • 7T6th Roland, Vincent Laurain, Wei Xing Zheng, Kameshwar Poolla. Model structure learning: a support vector machine approach for LPV linear-regression models//50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) [C]. 2011: 3 I92-3197.
  • 8Suykens Johan A K, Joos Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9 (3): 293-300.
  • 9Wang Haifeng, Hu Dejin. Comparison of SVM and LS-SVM for regression//International Conference on Neural Networks and Brain. ICNN&B'05 [C]. 2005:279-283.
  • 10李平,任朋辉.工业串联系统的多约束广义预测控制[J].化工学报,2010,61(8):2159-2164. 被引量:8

二级参考文献56

共引文献22

同被引文献85

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部