期刊文献+

Advanced non-precious electrocatalyst of the mixed valence CoO_x nanocrystals supported on N-doped carbon nanocages for oxygen reduction 被引量:5

Advanced non-precious electrocatalyst of the mixed valence CoO_x nanocrystals supported on N-doped carbon nanocages for oxygen reduction
原文传递
导出
摘要 Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond. Taking advantage of the nitrogen (N)-participation and large surface area of N-doped carbon nanocages (NCNCs), the COOx nanocrystals are conveniently immobilized onto the NCNCs with high dispersion. The CoOx/NCNCs hybrid exists in the mixed valence with predominant CoO over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining -94% current density even after operation over 100 h. These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第1期180-186,共7页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(51232003,21473089,21373108,21173115) the National Basic Research Program of China(2013CB932902) Jiangsu Province Science and Technology Support Project(BE2012159) Suzhou Science and Technology Plan projects(ZXG2013025) National Science Fund for Talent Training in Basic Science(J1103310)
关键词 cobalt oxide nanocrystals fuel cells non-precious electrocatalysts nitrogen doped carbon nanocages oxygen reductionreaction 氧还原反应 纳米晶体 混合价 纳米笼 N掺杂 金属电极 四氧化三钴
  • 相关文献

参考文献45

  • 1Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345-352.
  • 2Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294-303.
  • 3Gasteiger HA, Markovic NM. Just a dream—or future reality? Sicence, 2009, 324: 48-49.
  • 4Xiong W, Du F, Liu Y, Perez A, Supp M, Ramakrishnan TS, Dai LM, Jiang L. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc, 2010, 132: 15839-15841.
  • 5Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG. Fuel Cell Handbook. Federal Energy Technology Center, Morgantown WV, Pittsburgh PA, 1998. 159-165.
  • 6Mcbreen J, Olender H, Srinivasan S. Carbon supports for phosphoric acid fuel cell electro-catalysts: alternative materials and methods of evaluation. J Appl Electrochem, 1981, 11: 787-796.
  • 7Yang C. Resisting the nation state: the pacifist and anarchist tradition. Energy Policy, 2009, 37: 1805-1808.
  • 8Chung HT, Won HJ, Zelenay P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun, 2013, 4: 1922.
  • 9Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res, 2013, 46: 1878-1889.
  • 10Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J, Wu G, Chung HT, Johnston CM, Zelenay P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci, 2011, 4: 114-130.

同被引文献56

  • 1黄乃宝,衣宝廉,梁成浩,侯明,明平文.聚苯胺改性钢在模拟PEMFC环境下的电化学行为[J].电源技术,2007,31(3):217-219. 被引量:10
  • 2Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8):2168-2201.
  • 3Stamenkovic V, Mun B S, Mayrhofer K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie, 2006, 118(18):2963-2967.
  • 4Stamenkovic V R, Markovic N M. Oxygen reduction on platinum bime-tallic alloy catalysts[J]. Handbook of Fuel Cells, 2009.
  • 5Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-re-duction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222.
  • 6Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177):1339-1343.
  • 7Shao M, Sasaki K, Marinkovic N S, et al. Synthesis and characteriza-tion of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communica-tions, 2007, 9(12):2848-2853.
  • 8Srivastava R, Mani P, Hahn N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparti-cles[J]. Angewandte Chemie International Edition, 2007, 46(47):8988-8991.
  • 9Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1):81-87.
  • 10Zhang G, Shao Z G, Lu W, et al. Aqueous-phase synthesis of sub 10 nm Pdcore@Ptshell nanocatalysts for oxygen reduction reaction using amphiphilic triblock copolymers as the reductant and capping agent[J]. The Journal of Physical Chemistry C, 2013, 117(26):13413-13423.

引证文献5

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部