期刊文献+

激光雷达和摄像机联合标定识别作物 被引量:5

Crop recognition by combined calibration of laser radar and camera
下载PDF
导出
摘要 作物识别技术广泛应用于杂草精准对靶施药、果实采摘机器人、植物病虫害识别等方面。从机器视觉和激光探测两方面分析了国内外作物识别的研究现状,机器视觉识别作物主要是利用作物的颜色、纹理、形状、位置特征;激光探测识别作物利用激光的测距信息。分析了国内外融合激光雷达和摄像机信息识别作物的研究现状,总结了激光雷达和摄像机联合标定的方法,并指出其在作物识别中的重要性。 Crop recognition technology is widely used in precise targeted spray of weed, fruit picking robot, plant pest identification and others. Laser acquires the depth information of crops, while the image information is captured by the camera. The actual size and position can be obtained by fusion of depth information and image information of crops.Domestic and international crop recognition researches were analyzed from the two aspects of machine vision and laser detection. Crop recognition based on machine vision used color, texture, shape and location features, while crop recognition based on laser detection used the depth information. The current situation of the fusion of laser radar information and camera information to identify crops was analyzed. Meanwhile the methods of combined calibration of laser radar and camera were summed up and the importance of combined calibration of laser radar and camera in crop recognition was pointed out.
出处 《广东农业科学》 CAS CSCD 北大核心 2014年第24期161-165,178,共6页 Guangdong Agricultural Sciences
基金 国家林业局"948"项目(2013-4-02) 2013年留学人员科技活动项目择优经费
关键词 激光 机器视觉 联合标定 识别 作物 laser machine vision combined calibration recognition crop
  • 相关文献

参考文献37

  • 1Meyer G E,Neto J C. Verification of color vegetation indicesfor automated crop imaging applications[J]. Computer and Ele-ctronics in Agriculture, 2008,63(2):282-293.
  • 2Arefil A, Motlagh A M, Mollazade K, et al. Recognition andlocalization of ripen tomato based on machine visionfj]. Austr-alian Journal of Crop Science, 2011,5(10):1144-1149.
  • 3Zhang J, Wang R J, Xie C J, et al. An algorithm forsegmenting pest from crop pest image with complicatedbackground[J]. Journal of Computational Information Systems,2013,9(10):3857-3864.
  • 4Rathore V S,Kumar M S, Verma A. Color based imagesegmentation using L*A*B* color space based on geneticalgorithmfj]. International Journal of Emerging Technology andAdvanced Engineering, 2012,2:156-162.
  • 5Barragdn P,Ngugi J M, Plant M K, et al. Object-based cropidentification using multiple vegetation indices, texturalfeatures and crop phenoiogy[J]. Remote Sensor Environment,2011,7:1301-1316.
  • 6李先锋,朱伟兴,纪滨,刘波,马长华.基于图像处理和蚁群优化的形状特征选择与杂草识别[J].农业工程学报,2010,26(10):178-182. 被引量:30
  • 7S0gaard H T,Olsen H J. Determination of crop rows by imageanalysis without segmentationfj]. Computer and Electronic inAgriculture, 2003,38:141-158.
  • 8张志斌,罗锡文,臧英,厚福祥,徐晓东.基于颜色特征的绿色作物图像分割算法[J].农业工程学报,2011,27(7):183-189. 被引量:87
  • 9赵博,宋正河,毛文华,毛恩荣,张小超.基于PSO与K-均值算法的农业超绿图像分割方法[J].农业机械学报,2009,40(8):166-169. 被引量:22
  • 10Zheng L Y, Zhang J T, Wang Q Y. Mean -shift -based colorsegmentation of images containing green vegetationfj]. Compu-ters and Electronics in Agriculture, 2009,65:93-98.

二级参考文献149

共引文献498

同被引文献84

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部