摘要
为了比较不同行距插秧机的作业效果,以及机插秧不同株行距组合对水稻生长和产量的影响,在江苏靖江、张家港和黄海农场3地进行了连续2 a田间定位试验。每个试验点设置行株距分别为:30 cm×11 cm、25 cm×14 cm、25 cm×11 cm 3种株行距组合处理,3次重复。结果表明,在水稻漏插率方面,2012年30 cm×11 cm(行距×株距)处理最高,25 cm×11 cm(行距×株距)处理最低,2013年30 cm×11 cm(行距×株距)处理仍最高,25 cm×14 cm(行距×株距)处理最低。窄行距大株距有利于降低水稻漏插率,但在伤秧率、倒秧率方面和每穴平均株数方面,3个品种的不同处理之间均无统一规律;分蘖稳定后各试验点茎蘖数均为30 cm×11 cm(行距×株距)处理最高,25 cm×11 cm(行距×株距)处理最低,大株行距有利于促进水稻分蘖;产量方面各处理每公顷有效穗数30 cm×11 cm(行距×株距)处理<25 cm×11 cm(行距×株距)处理,其他产量构成因素差异不显著,最终各处理实际产量表现为25 cm×11 cm(行距×株距)处理较好,故插秧机行株距为25 cm×11 cm较适合于江苏省水稻机械化种植。该研究可为江苏省水稻插秧机机具选型提供参考。
In mechanical rice transplanting, hill-row spacing combination directly influenced the growth and yield of rice. To compare the effect of hill-row spacing on mechanical transplanting rice, the growth and yield of rice, we set up 2-year field experiments located in Zhangjiagang, Jingjiang and the Yellow Sea farm in Jiangsu Province, separately. The rice breed planted in Zhangjiagang, Jingjiang and the Yellow Sea farm was Wuyunjing 29, Wuyunjing24 and Lianjing 7, separately, all of which were japonica hybrid rice. There were 3 row-hill spacing treatments in—at each site, which the row spacing by hill spacing was 30 cm by 11 cm, 25 cm by 14 cm, 25 cm by 11 cm, each repeated 3 times. By the influence of the spacing, the area of 30 cm by 11 cm (row spacing by hill spacing), 25 cm by 14 cm (row spacing by hill spacing) and 25 cm by 11 cm (row spacing by hill spacing) was 135 m2, 150 m2 and 150 m2, separately. At the same site within each treatment, only the row-hill spacing differences were the mutation factors, the other factors were controlled. The effect of the mechanical transplanting rice, the tillering dynamics of rice, yield and yield composition of rice were tested. The effect of mechanical rice transplanting measured immediately after transplanting. 200 continuous points were taken in each area; the number of plants per hole, seedling injury and inverted were recorded to calculate the average number of plants per hole, drain planting rate, seedling injury rate and seedling inverted rate. To determine the tillering dynamic, the number of tillers was counted every 7 days from rice transplanting to the full panicle stage, 20 points for each plot were fixed. Actual yield of rice was determined after ripening. For each treatment, 3 m2 of rice were weighed after harvesting to calculate the actual yield, repeated 3 times. According to the average number of plants per hill, 3 hill plants were selected for testing, and then the yield component and the theoretical yield of rice were calculated. SPSS17.0 and Excel 2007 were used for the statistical analysis. The results are indicated below:1) Drain planting rate of 25 cm by 14 cm (row spacing by hill spacing) was the lowest, then was 25 cm by 11 cm (row spacing by hill spacing), 30 cm by 11 cm (row spacing by hill spacing) was the highest. These indicate that narrow row spacing large hill spacing was conducive to reducing the drain planting rate of rice. No rule was found from the rates of seedling injury and inverted in between these 3 breeds. 2) The number of tillers after tiller stabilization of 30 cm by 11 cm (row spacing by hill spacing) was the highest, and then was 25 cm by 14 cm (row spacing by hill spacing), 25 cm by 11 cm (row spacing by hill spacing) was the lowest. These indicate that large row spacing and hill spacing is conducive to the promotion of rice tillering. 3) In the aspect of the yield components, ears of 25 cm by 11 cm (row spacing by hill spacing) were the highest, and then were 25 cm by 14 cm (row spacing by hill spacing), 30 cm by 11 cm (row spacing by hill spacing) was the lowest. No rule was found between the grain numbers per spike, the seed rate and 1000-grain weight. Finally in the aspect of the theoretical rice yield and the actual rice yield, 25 cm by 11 cm(row spacing by hill spacing) was the highest, and then 25 cm by 14 cm (row spacing by hill spacing), 30 cm by 11 cm (row spacing by hill spacing) was the lowest. The theoretical rice yields of 25 cm by 11 cm (row spacing by hill spacing) were 9.68%-26.5%higher than 30 cm by 11 cm (row spacing by hill spacing), and the actual rice yields of 25 cm by 11 cm (row spacing by hill spacing) were 3.18%-20.6%higher than 30 cm by 11 cm (row spacing by hill spacing). The 25 cm by 11 cm (row spacing by hill spacing) row transplanter should be more suitable for mechanical rice planting in Jiangsu Province.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2014年第22期37-43,共7页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家科技支撑计划课题(2013BAD08B01-5)
关键词
农业机械
农作物
生长
株行距
插秧效果
茎蘖动态
agricultural machinery
crops
growth
row spacing
effect of mechanical transplanting rice
tillering dynamics