期刊文献+

Sn_xZn_(1-x)WO_4光催化剂的水热合成及其可见光催化活性

Hydrothermal synthesis of Sn_xZn_(1-x)WO_4 photocatalysts and their catalytic activity under visible light
下载PDF
导出
摘要 采用水热合成法制备新型可见光催化剂SnxZn(1-x)WO4,以甲基橙染料废水为探针污染物,考察Zn2+与Sn2+物质的量比、水热温度和水热时间对SnxZn(1-x)WO4光催化剂的催化活性、表面形貌和比表面积的影响。结果表明,在Zn2+与Sn2+物质的量比为0.25、水热温度100℃和水热时间12 h条件下,合成的Sn0.8Zn0.2WO4催化剂活性最好,光照30 min后,对甲基橙染料的脱色率达98.62%,较Sn WO4催化剂(合成条件为原始p H值,160℃水热反应24 h)提高46.66%。采用水热合成法制备的催化剂SnxZn(1-x)WO4具有良好的可见光活性。 The novel visible-light photocatalysts SnxZn( 1-x)WO4was synthesized by hydrothermal method.The influence of Zn2 +/ Sn2 +molar ratio,hydrothermal synthetic temperature and time on photocatalytic activitiy of SnxZn( 1-x)WO4catalysts was investigated by using methyl orange dye wastewater as probe pollutant. The as-prepared SnxZn( 1-x)WO4catalysts were characterized by SEM and BET. The results showed that Sn0. 8Zn0. 2WO4 photocatalyst possessed the best photocatalytic activity under the preparation condition of Zn2 +/ Sn2 +molar ratio 0. 25,hydrothomal reaction temperature 100 ℃ and hydrothomal reaction time 12 h. After visible-light illumination for 30 min,methyl orange degradation rate over Sn0. 8Zn0. 2WO4 photocatalyst was 98. 62%,which was 46. 66% higher than that over Sn WO4 prepared under the condition of original p H and 160 ℃ hydrothermal reaction for 24 h. Therefore,SnxZn( 1-x)WO4synthesized by hydrothermal method exhibited excellent photocatalytic activity under visible light irradiation.
出处 《工业催化》 CAS 2014年第12期949-952,共4页 Industrial Catalysis
关键词 催化剂工程 SnxZn(1-x)WO4光催化剂 可见光催化 水热合成 甲基橙降解 catalyst engineering SnxZn(1-x)WO4 photocatalyst visible light catalysis hydrothermal synthesis methyl orange degradation
  • 相关文献

参考文献9

  • 1张宁.印染废水处理工艺的发展与现状[J].能源与节能,2012(9):59-60. 被引量:1
  • 2Neamtu M, Yediler A, Siminiceanu I, et al. Decolorization of disperse red 354 azo dye in water by several oxidation processes a comparative study [ J ]. Dyes and Pigments 2004,60:6l - 68.
  • 3Brillas Enric, Calpe Juan C, Casado Juan. Mineralization of 2,4-D by advanced electrochemical oxidation processes [ J ]. Water Research, 2000,34 ( 8 ) : 2253 - 2262.
  • 4Song S Y, Zhang Y, Xing Y, et al. Rectangular AgIn( W04 )2 nanotubes : a promising photoel-ectric material [ J ]. Advanced Functional Materials ,2008,18:2328 - 2334.
  • 5Thangadurai V, Knittlmayer C, Weppner W A. Metathetic room temperature preparation and characterization of seheelite- type ABOa ( A = Ca, Sr, Ba, Pb; B = Mo, W) powders [ J ]. Materials Science and Engineering B ,2004,106:228 - 233.
  • 6Matthew W Stohzfus, Patrick M Woodward, Ram Seshadri, et al. Structure and bonding in SnWO4, PhWO4, and BiVO4 : lone pairs vs inert pairs [ J ]. Inorganic Chemistry, 2007,46 (10) :3839 - 3850.
  • 7Cho I S, Kwak C H, Kim D W. Photophysical, photoelectro- chemical, aod photocatalytic properties of novel SnW04 oxide semiconductors with narrow band gaps [ J ]. Journal of Physical Chemistry C ,2009,113 : 10647 - 10653.
  • 8Ungelenk J, Feldmann C. Synthesis of faceted 13-SnWO4 microcrystals with enhanced visible-light photocatalytic properties [ J ]. Chemical Communications, 2012,48 ( 63 ) : 7838 - 7840.
  • 9Su Y G,Zhu B L, Guan K, et al. Particle size and structural control of ZnWO4 nanocrystals via Sn2 doping for tunable optical and visible photocatalytic properties [ J ]. Journal of Physical Chemistry C ,2012,116 : 18508 - 18517.

二级参考文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部