期刊文献+

基于离散滑模观测器的锂电池荷电状态估计 被引量:49

Charge State Estimation of Li-ion Batteries Based on Discrete-time Sliding Mode Observers
原文传递
导出
摘要 锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。 Estimation of the state of charge (SOC) is the key technique in the power management system for a li-ion power battery. For the inherent nonlinear property of the li-ion power battery, a method of SOC estimation is proposed applied to batteries, and the design of the algorithm for battery SOC estimation based on discrete-time sliding mode observers (DSMO) is given and the stability proof of DSMO is proven. Based on the Thevenin equivalent model, the detailed procedures of this estimation method are exhibited,and the model parameters are identified at different current rate and ambient temperature. The accuracy, the robustness and the time complexity of the extended Kalman filter (EKF) and the proposed method are analyzed in this comparative study. Experiments show that the arithmetic of the discrete-time sliding mode observers can be used to compute the battery SOC quickly and accurately with the dynamic error of 3%, and that the feasibility of the proposed algorithm is verified.
作者 孙冬 陈息坤
出处 《中国电机工程学报》 EI CSCD 北大核心 2015年第1期185-191,共7页 Proceedings of the CSEE
基金 国家863高技术基金项目(2011AA11A247)~~
关键词 锂电池 荷电状态 离散滑模观测器 扩展卡尔曼滤波器 Li-ion battery state of charge discrete-time sliding mode observer extended Kalman filter
  • 相关文献

参考文献19

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:199
  • 2雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. 被引量:34
  • 3Plett G L. Extended Kalman filtering for batterymanagement systems of LiPB-based HEV battery packs part 1: Background[J]. Journal of Power Sources, 2004, 134(2): 252-261.
  • 4Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2: Modeling and identification[J]. Journal of Power Sources, 2004, 134(2): 262-276.
  • 5Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 3: Parameter estimation[J]. Journal of Power Sources, 2004, 134(2): 277-292.
  • 6Shi Pu, Zhao Yiwen. Application of unscented Kalman filter in the SOC estimation of Li-ion battery for autonomous mobile robot[C]//Proceedings of the 2006 IEEE International Conference on Information Acquisition. Weihai, China: IEEE, 2006: 1279-1283.
  • 7Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1: Introduction and state estimation[J]. Journal of Power Sources, 2006, 161(2): 1356-1368.
  • 8Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation[J]. Journal of Power Sources, 2006, 161(2): 1369-1384.
  • 9高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技术学报,2011,26(11):161-167. 被引量:60
  • 10魏克新,陈峭岩.基于多模型自适应卡尔曼滤波器的电动汽车电池荷电状态估计[J].中国电机工程学报,2012,32(31):19-26. 被引量:60

二级参考文献55

  • 1裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 2陈全世,林拥军,张东民.电动汽车用铅酸电池放电特性的研究[J].汽车技术,1996(8):7-11. 被引量:24
  • 3Aylor J H, Thieme A, Johnson B W. A battery state of charge indicator for electric wheelchairs[J]. IEEE Transactions on Industrial Electronics, 1992, 39(10): 398-409.
  • 4Tsutomu Y, Kazuaki S, Ken-Ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedinds of the 20th International Telecommunications Energy Conference, 1998:210-214.
  • 5Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the 19th International Electric Vehicle Symposium, 2002: 527-538.
  • 6Gregory L Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Partl. Background [J]. Journal of Power Sources, 2004,134(2): 252-261.
  • 7ThermoAnalytics Inc.. Battery modeling for HEV simulation by ThermoAnalytics Inc.http://www.thermoanalytics.com/suplaort/publications/battervmod elsdoc.html.
  • 8Rudolph van der Merwe, Eric Wan Kalman filters for probabilistic inference Sigma-point in dynamic state-space models[C]. Proceedings of the Workshop on Advances in Machine Learning, 2003: 1-27.
  • 9Julier S J, Uhlmann J K, Durrant Whyte H F. A new approach for filtering nonlinear systems[C]. Proceedings of the American Control Conference,Seattle, Washington, 1995: 1628-1632.
  • 10Morio K,Kazuhiro H,Anil P.Battery SOC and distance to empty of the Honda EV Plus[A].Proceedings of the 14th International Electric Vehicle Symposium[C].1997.

共引文献331

同被引文献453

引证文献49

二级引证文献561

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部