期刊文献+

基于改进型LBP的Floatboost人脸检测 被引量:2

FloatBoost Algorithm for Face Detection Based on Improved LBP Features
下载PDF
导出
摘要 目前已涌现出了许多人脸检测算法,而每种算法的侧重点不同,不能形成很好的综合检测能力。为了兼顾人脸检测的TP,FP和检测时间,文中提出了一种基于改进型LBP纹理特征的Floatboost算法。该算法首先提取具有一定旋转不变性的改进型LBP纹理特征。其次采用双阈值Floatboost算法来训练特征值,并生成强分类器。最后采用Adaboost级联算法来进一步减少检测时间。通过实验分析表名:该算法在保证一定TP的前提下,不仅可以减少检测的时间,还降低了FP。 There are numerous algorithms for face detection with different emphasis. Combining the truepositive(TP) rate, false-positive (FP)rate with the detection time, an improved Floatboost algorithm is presented based on the modified LBP texture features. The algorithm can extract the modified LBP features with certain direction invariance. And the FloatBoost with double thresholds is used to train the feature and generate strong classifier. Finally,the Adaboost cascade algorithm is implemented to reduce the detection time. Experiment results show that while the TP rate is guaranteed, the algorithm can reduce the detection time and lower the FP rate.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2014年第6期75-79,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61106021) 南京邮电大学校科研基金(NY211059)资助项目
关键词 人脸检测 改进型LBP 双阈值的Floatboost算法 AdaBoost级联 face detection improved LBP FloatBoost algorithm with double threshold Adaboost cascade
  • 相关文献

参考文献11

  • 1PAIJY I. Fare detection using Haar-like features cascade and conv-olutional neural network[C] // Proceedings of International Confer-ence on Modem Problems of Radio Engineering, Telecommunica-tions ami Computer Science. Piscataway : IEEE,2008 : 375 - 377.
  • 2OSUNA B:,FREUND , GIHOS1 F. Training support vector ma-chines :An application to face detection[ C] //1EEK Computer Soci-ety Conference on Computer Vision and Pattern Recognition. Piscat-away : IEEE, 1997 : 130 - 136.
  • 3ROWLEY H A, BALUJA S, KANADE T. Neural network-basedface detection[ J] . IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 1998 ,20( 1) : 23 -38.
  • 4VIOLA P, JONES M J. Robust real-time face detection | J ]. Inter-national Journal of Computer Vision ,2004,57(2) ; 137 - 154.
  • 5BHLMANN P,YU B. Additive logistic regression : A statistical viewof boosting ( frietiman,hastie and tihshirani) [ J]. Annals of the In-stitute of Statistical Mathematics,2000,52 : 287 -315.
  • 6ZAKARIA Z, SUANDI S A. Face detection using combination ofneural network and Adahoost [ C ] // TENCON. Piscataway: IEEE,2011 ; 335 -338.
  • 7OJALA T, PIETIKAINEN M , MAENPAA T. Multiresolution gray-scale and rotation invariant texture rlassification with local binarypatterns [ J ]. IEEE Transactions on Pattern Analysis and MachineIntel-ligencef2002,24(7) : 971 -987.
  • 8HEIKKILA M,PIETIKAINEN M,SCHMID C. Description of inter-est regions with local binary patterns [ J ]. Pattern Recognition,2009,42(3) : 425 -436.
  • 9ZHANG W,TONG R,i)ONG J. Z-AdaBoost: iWling 2-threshol-ded weak classifiers for object detection [C] // Proceedings of theSecond International Symposium on Intelligent Information Technol-ogy Application. Piscataway : IEEE ,2008 ,2 : 839 - 844.
  • 10QUINLAN J H. Induction of decision trees [ J ]. Machine Iram-itifr, 1986,1(1) : 81 -106.

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部