期刊文献+

基于双索引的子图查询算法 被引量:2

Subgraph Query Algorithm Based on Dual Index
下载PDF
导出
摘要 传统的子图查询算法大多只在图数据库上进行一次挖掘算法,即在图数据库上建立稳定的数据库索引后将不再对索引进行更新。随着查询兴趣的改变或数据库的频繁更新,原有的数据库索引将不再能提供有用的信息来减少查询过程中候选图的数量。为此,提出一种双索引的子图查询算法,同时在数据库和查询流上挖掘频繁子图并建立索引。子图查询和查询流索引的建立同步进行,即使查询兴趣改变,查询流索引也能自适应地更新索引信息来优化查询效率。针对数据库的频繁更新,查询流索引已提供实时的有效信息,数据库索引无需重新建立。实验结果表明,双索引的结合能有效提高查询子图的处理效率。 Most traditional subgraph query algorithms only conduct a mine-at-once algorithm on the graph database.That is,after establishing a stable database index,the index is no longer be updated. This kind of algorithms may encounter such problems:with the query interest frequently changing or the database frequently updating,the original database index becomes increasingly obsolete and no longer provides useful information to effectively reduce the number of candidate graphs. Based on this consideration,this paper proposes a dual index structure which mines frequent subgraphs on the database and the query stream,and establishes index on them. The process of subgraph query and the establishment of query index are simultaneous. They complement each other. So even if the query interest changes,the query stream index can be adaptively updated to optimize the query performance. For the frequent updates of database,the database index doesnot need to be re-built,because the query stream index provides useful information in real time.Experimental results show that the dual index improves the processing efficiency of subgraph query.
作者 陆慧琳 黄博
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期44-48,共5页 Computer Engineering
关键词 双索引 查询流索引 子图查询 频繁子图 图数据库 子图同构 dual index query stream index subgraph query frequent subgraph graph database subgraph isomorphism
  • 相关文献

参考文献11

  • 1彭佳扬,杨路明,王建新,刘振,李敏.一种高效挖掘生物网络闭合频繁子图的算法[J].高技术通讯,2009,19(2):188-193. 被引量:1
  • 2楼宇波,马坚,周皓峰,袁晴晴,施伯乐.基于频繁链接的Web权威资源挖掘[J].计算机研究与发展,2003,40(7):1095-1103. 被引量:6
  • 3Johnson D S,Garey M R.Computers and Intractability:A Guide to the Theory of Np-completeness[M].[S.1.]:W.H.Freeman and Company,1979.
  • 4Giugno R,Shasha D.Graph Grep:A Fast and Universal Method for Querying Graphs[C]//Proceedings of ICPR’02.Quebec,Canada:IEEE Press,2002:123-129.
  • 5Zhao Peixiang,Yu J X,Yu P S.Graph Indexing:Tree+delta>=graph[C]//Proceedings of VLDB’2007.[S.1.]:IEEE Press,2007:233-241.
  • 6Klein K,Kriege N,Mutzel P.CT-Index:Fingerprint-based Graph Indexing Combining Cycles and Trees[C]//Proceedings of ICDE’11.Hannover,Germany:IEEE Press,2011:258-265.
  • 7李先通,李建中,高宏.一种高效频繁子图挖掘算法[J].软件学报,2007,18(10):2469-2480. 被引量:35
  • 8Yan Xifeng,Yu P S,Han Jiawei.Graph Indexing:A Frequent Structure-based Approach[C]//Proceedings of SIGMOD’04.Paris,France:ACM Press,2004:568-576.
  • 9Cheng J,Ke Y,Ng A,et al.FG-index:Towards Verification-free Query Processing on Graph Data-bases[C]//Proceedings of SIGMOD’07.Beijing,China:[s.n.],2007:541-549.
  • 10Yan Xifeng,Han Jiawei.g Span:Graph-based Substructure Pattern Mining[C]//Proceedings of ICDM’02.Maebashi,Japan:IEEE Press,2002:236-246.

二级参考文献52

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB' 94), Sanfiaogo di Chile,Chile, 1994. 487-499
  • 2Yah X, Han J. gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02), Maebashi City, Japan, 2002. 721-724
  • 3Koyuturk M, Grama A, Szpankowski W. An eficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics, 2004,20(1) : i200-i207
  • 4Hu H Y, Yan X F, Huang Y, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005,21(1) : i213-i221
  • 5Olken F. Biopathways and protein interaction databases. In: A lecture in Bioinfonnatics Tools for Comparative Genomics: A short course, Berkeley, CA, 2003
  • 6Hart J W, Pei J, Yin Y W. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACMSIG- MOD International Conference on Management of Data, Dallas, TX,USA, 2000. New York: ACM Press, 2000. 1-12
  • 7Krishnamurthy L, Nadeau J, Ozsoyoglu G, et al. Pathways database system: an integrated system for biological pathways. Bioinformatics, 2003,19(8) : 930-937
  • 8Han J W, Kamber M. Data Mining Concepts and Tech- niques. 2nd Edition. Singapore: Elsevier (Singapore) Pte Ltd, 2007. 233-249
  • 9Altschul S F, Madden T L, Scheffer A A, et al. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25 ( 17 ) : 3389- 34O2
  • 10Thompson J D, Higgins D G, Gibson T J. CLUSTALW: im- proving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994,22 (22), 4673-4680

共引文献39

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部