期刊文献+

二维弱奇异积分高精度数值求积公式的构造

A New Construction of High Accurate Numerical Quadrature Formulas for 2D Weak Singular Integral
下载PDF
导出
摘要 在欧拉—麦克劳林展开式和一维弱奇异积分的求积公式的基础上,推导出了二维弱奇异积分的求积公式及其误差的渐进展开式。此类求积公式只需赋值,不需计算二重积分,故计算量小。利用这类积分公式进行计算可以得到十分精确的结果,使得收敛阶大为提高,为讨论更为复杂地多维弱奇异积分方程奠定了基础。 Quadrature formulas for the Two-dimension weak singular integrals are presented,and the asymptotic expansions of the errors are also obtained by Euler-Maclaurin expansions and one-dimension weak singular quadrature formulas.The algorithms are very simple and straightforward for calculating singular integrals.These quadrature formulas contain no calculation of any double integration,and computation costs are reduced greatly but the accuracy order of the algorithms improved obviously.Using the quadrature formulas can obtain accurate results,which provide possibilities for solving more complicated multi-dimension weak singular integrals.
出处 《东华理工大学学报(自然科学版)》 CAS 2014年第4期447-450,共4页 Journal of East China University of Technology(Natural Science)
基金 国家自然基金(11301070) 江西省自然科学基金(20132BAB211016) 江西省教育厅科技项目(GJJ13444) 东华理工大学博士启动基金
关键词 弱奇异积分 求积公式 高精度 欧拉—麦克劳林展开式 weak singular integral quadrature formula high accuracy Euler-Maclaurin expansion
  • 相关文献

参考文献8

  • 1阮周生,孙海.同伦摄动法在一类线性积微分方程初值问题中的应用[J].东华理工大学学报(自然科学版),2010,33(3):297-300. 被引量:4
  • 2Atkinson K E.1989.An Introduction to Numerical Analysis[M].2nd edn.Wiley&Sons.
  • 3Atkinson K E.1997.The Numerical Solution of Integral Equations of the Second Kind[M].Cambridge University Press.
  • 4Choi U J,Kim S W,Yun B I.2004.Improvement of the asymptotic behavior of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals[J].Int.J.Numer.Meth.Engin.,61:496-513.
  • 5Lyness J N,Ninham B W.1967.Numerical quadrature and asymptotic expansions[J].Math.Comp.,21:162-178.
  • 6Lifanov I K,Poltavskii L N,Vainikko G M.2004.Hypersingular Integral Equations and Their Applications[M].ACRC Press Company.
  • 7Sidi A,Israeli M.1988.Quadrature method for periodic singular and weak singular Fredholm integral equations[J].J Sci.comp.,2:201-231.
  • 8Sloan I H,Spence A.1988.The Galerkin method for integral equations of first-kind with logarithmic kernel:theory[J].IMA J.Numer.Anal.,8:105-122.

二级参考文献8

  • 1刘唐伟,应正卫,吴志强.第二类非线性Fredholm型积分方程数值解[J].东华理工学院学报,2005,28(3):294-296. 被引量:3
  • 2Babolian E,Saeidian J,Azizi A,2009.Application of Homotopy Perturbation Method to Some Nonlinear Problems[J].Applied Mathematical Sciences,3(45):2215-2226.
  • 3He J H.1999.Homotopy perturbation technique[J].Computer Methods in Applied Mechanics and Engineering,178:257-262.
  • 4He J H.2000.A coupling method of a homotopy technique and a perturbation technique for nonlinear problems[J].International Journal of Non-Linear Mechanies,35:37-43.
  • 5Jaradat H,AlsayyedO,Al-Shara's.2008.Numerical Solution ofLinear ntegro-Differential Equations[J].Journal of Mathematics and Statistics,4(4):250-254.
  • 6Qarnia H E.2009.Application of homotopy perturbation method to nonhomogeneous parabolic partial and non linear differential equations[J].World Journal of Modelling and Simulation 5(3):225-231.
  • 7Rostam K,Homotopy S.2008.Perturbation Method for Solving System of Nonlinear Fredholm Integral Equations of the Second Kind[J].Journal of Applied Sciences Research,4(10):1166-1173.
  • 8斯琴,斯仁道尔吉.同伦摄动法求KdV方程和Burgers方程的近似解[J].内蒙古师范大学学报(自然科学汉文版),2008,37(3):381-384. 被引量:10

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部