期刊文献+

基于无偏灰色马尔可夫链的吉林省降水量预测 被引量:8

Predication of Precipitation Based on Unbiased Gray Markov Chain in Jilin Province
下载PDF
导出
摘要 为了更准确地对吉林省降水量进行预测,分析其时空变化特征,应用无偏灰色马尔可夫链模型对8个具有代表性的雨量站进行降水量预测,并根据预报结果讨论历史数据波动性与预报精度的关系。其中:83%以上预测结果合格,白城、乾安、长春、蛟河、四平、通化6个地区降水量多年呈递减趋势,减幅分别为0.23%、0.09%、0.24%、1.01%、0.51%、0.54%;延吉、靖宇2个地区降水量多年呈递增趋势,增幅分别为2.60%、0.54%。结果表明:无偏灰色马尔可夫链模型预测精度较高,说明该方法适用于吉林省的降水量预测;吉林省中西部地区降水量呈递减趋势,东部地区呈递增趋势,但变幅不大;在波动性与预报精度的关系方面,时间序列的波动性越大预测所产生的误差越大。 For more accurately predication and analysis of the spatial and temporal variation characteristics of precipitation of eight representative stations of Jilin Province,we used the unbiased grey Markov chain model to discuss the relationship between historical data volatility and the forecast accuracy.More than 83% predicted results are qualified.Baicheng,Qian’an,Changchun,Jiaohe, Siping,Tonghua six regional yearly precipitation shows a trend of decline,the damping ranges are 0.23%,0.09%,0.24%,1.01%,0.5 1%,0.54%;while Yanji and Jingyu two regional precipitation is increasing,with growth rates of 2.6% and 0.54% respectively.The results show that the modified unbiased gray Markov chain model is suitable for Jilin Province’s precipitation forecast with higher accuracy.It shows that the precipitation has a trend of decreasing in Midwest of Jilin Province and the precipitation has a trend of increasing in eastern of Jilin Province.In the relation between volatility and forecast precision,the study finds that the greater the volatility of time series is,the larger theprediction error is.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2014年第6期1973-1979,共7页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金项目(41072171) 吉林省科技厅重点攻关项目(20100452)
关键词 灰色模型 马尔可夫链 降水量 预测 吉林省 gray model Markov chain precipitation predication Jilin Province
  • 相关文献

参考文献14

二级参考文献79

共引文献416

同被引文献78

  • 1李岩,屈祖玉,罗德贵,李晓刚.埋地管线腐蚀失效案例库设计与研究[J].腐蚀与防护,2004,25(12):541-543. 被引量:6
  • 2王弘宇,马放,杨开,吕斌.灰色新陈代谢GM(1,1)模型在中长期城市需水量预测中的应用研究[J].武汉大学学报(工学版),2004,37(6):32-35. 被引量:55
  • 3王海涛,韩恩厚,柯伟.灰色理论对碳钢、低合金钢海水腐蚀的预测和分析[J].腐蚀与防护,2005,26(9):373-374. 被引量:16
  • 4范剑青,姚琦伟.非线性时间序列[M].陈敏,译.北京:高等教育出版社,2005:240-307.
  • 5Ching,W.K.,Ng,M.K.,&Fung,E.S.(2008).Higher-older multivariate markov chains and their applications.Linear Algebra&Its Applications,428(2-3):492-507.
  • 6Akshay,S.,Antonopoulos,T.,Jo(e|¨)l Ouaknine,&Worrell,J.(2015).Reachability problems for markov chains.Information Processing Letters:115,155-158.
  • 7ZHANG Jinling&JUNG Zhihong.(2010).Experimental simulations of extreme precipitation based on the multi-status markov chain model.Acta Meteorologica Sinica,(4):484-491.
  • 8Salzenstein,F.,Collet,C.,Lecam,S.,&Hart,M.(2007).Non-stationary fuzzy markov chain.Pattern Recognition Letters,28(16):2,201-2,208.
  • 9Zimmermann,H.J.(1996).Fuzzy set theory and its applications,3rd ed.Department of Mechanical Engineering,1-Shou University,Kaohsiung,55(92):5-89.
  • 10Amro Elfeki,Michel Dekking.A markov chain model for subsurface characterization:theory and applications [J].Mathematical Geology,2001,33(5):569-589.

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部