期刊文献+

基于稀疏自编码深度神经网络的林火图像分类 被引量:34

Forest fire image classification based on deep neural network of sparse autoencoder
下载PDF
导出
摘要 针对林火与相似目标很难区分的问题,提出一种基于稀疏自编码深度神经网络的林火图像分类新方法。采用无监督的特征学习算法稀疏自编码从无标签图像小块中学习特征参数,完成深度神经网络的训练;利用学习到的特征从原始大小分类图像中提取特征并卷积和均值池化特征;对卷积和池化后的特征采用softmax回归来训练最终softmax分类器。实验结果表明,跟传统的BP神经网络相比,新方法能够更有效区分林火与红旗、红叶等类似物体。 With the problem that forest fire and its similar objects are difficult to distinguish, this paper presents a new forest fire image classification approach based on deep neural network of sparse autoencoder. Using an unsupervised learning algorithm sparse autoencoder to learn features of large number of small patches from some unlabeled images has completed the training for deep neural network, and then with the learned features, the features can be extracted from large scale images and be convolved and pooled. It uses pooled features to train the softmax classifier by softmax regression. Experimental results show that this new image classification approach can more effectively distinguish forest fire and its similar objects,red flag, red leaves, etc. than traditional neural network does.
出处 《计算机工程与应用》 CSCD 2014年第24期173-177,共5页 Computer Engineering and Applications
基金 苏州市国际科技合作计划项目(No.SH201115) 湖北省自然科学基金(No.2009-514)
关键词 稀疏自编码 无监督学习 卷积与池化 softmax回归 sparse autoencoder unsupervised learning convolve and pooling softmax regression
  • 相关文献

参考文献6

二级参考文献56

  • 1张进华,庄健,杜海峰,王孙安.一种基于视频多特征融合的火焰识别算法[J].西安交通大学学报,2006,40(7):811-814. 被引量:38
  • 2秦玉平,王秀坤.一种改进的快速支持向量机分类算法研究[J].大连理工大学学报,2007,47(2):291-294. 被引量:6
  • 3周军盈,杜啸晓.图像识别技术在火灾探测中的应用[J].消防科学与技术,2007,26(4):417-420. 被引量:14
  • 4Tenenbaum J B,Silva V de,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 5Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 6Rahimi A,Recht B,Darrell T.Learning to transform time series with a few examples[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10):1759-1775.
  • 7Liang W,David S.Learning and matching of dynamic shape manifolds for human action recognition[J].IEEE Transactions on Image Processing,2007,16(6):1646-1661.
  • 8Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 9Zeng X H,Luo S W,Wang J.Auto-associative neural network system for recognition[C] //Proceedings of the Sixth International Conference on Machine Learning and Cybernetics.Hong Kong,China:[s.n.] ,2007:2885-2890.
  • 10Hinton G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1771-1800.

共引文献669

同被引文献254

引证文献34

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部