期刊文献+

AR预测模型的IMM跟踪算法 被引量:2

AR prediction model based IMM tracking algorithm
下载PDF
导出
摘要 针对LOS/NLOS混合条件下对机动目标的鲁棒跟踪问题,提出一种基于AR预测模型的交互式多模型(Interacting Multiple Model,IMM)跟踪算法(ARIMM)。该算法利用AR预测模型对运动状态建模,针对LOS与NLOS条件下观测噪声的分布不同分别使用无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)和改进的无迹卡尔曼滤波器(Robust Unscented Kalman Filter,RUKF),通过IMM方法估计出移动台的位置,利用该位置更新AR模型的参数,使AR模型与真实运动状态更加匹配,实现精确跟踪。仿真结果表明,在LOS/NLOS混合条件下,与传统的UKF和RUKF算法相比,该算法对机动目标跟踪的鲁棒性更好。 In view of the problem of robust tracking of maneuvering target under LOS/NLOS condition, an IMM algorithm based on AR prediction model is proposed(ARIMM). AR prediction model is adopted to model the motion state,and UKF and RUKF are utilized separately for the reason that the state LOS and NLOS have different distribution of observation noise, and the IMM filter is used to estimate the position of BS, and the position is used to update the current parameters in AR prediction model and the AR model is made more matched with the true motion state, therefore the algorithm can perform precisely tracking. Simulation result demonstrates that the proposed algorithm performs better robustness under LOS/NLOS condition compared with the traditional UKF and RUKF.
出处 《计算机工程与应用》 CSCD 2014年第24期222-226,共5页 Computer Engineering and Applications
基金 国家科技重大专项(No.2011ZX03003-003-02)
关键词 机动目标跟踪 交互式多模型 自回归(AR)预测模型 无迹卡尔曼滤波器 maneuvering target tracking Interacting Multiple Model (IMM) Auto Regressive (AR) prediction model Unscented Kalman Filter (UKF)
  • 相关文献

参考文献13

  • 1Seah C E,Hwang I.Algorithm for performance analysis of the IMM algorithm[J].IEEE Transon Aerosp Electron Syst,2011,47(2):1114-1124.
  • 2Foo P H,Ng G W.Combining the interacting multiple model method with particle filters for manoeuvring target tracking[J].IEEE Trans on Radar,Sonar and Navigation,2011,5(3):234-255.
  • 3Farrel W.Interacting multiple model filter for tactical ballistic missile tracking[J].IEEE Trans on Aerosp Electron Syst,2008,44(2):418-426.
  • 4Kay S.Fundamentals of statistical signal processing:estimation theory[M].Englewood Cliffs,NJ:Prentice-Hall,1993.
  • 5Gustafsson F,Hendeby G.Some relation between extend and unscend kalman filter[J].IEEE Trans on Signal Processing,2012,60(2):545-555.
  • 6Liu Changyun,Shui Penglang.Unscented extended Kalman filter for target tracking[J].IEEE Journal of Systems Engineering and Electronics,2011,22(2):188-192.
  • 7Gezici S,Sahinoglu Z.UWB geolocation techniques for IEEE 802.15.4a personal area networks[R].Cambridge,MA,2004.
  • 8Wang X,Cui N.Huber-based unscented filtering and its application to vision-based relative navigation[J].IET Radar,Sonar and Navigation,2010,4(1):134-141.
  • 9Guvenc I,Chong Chia-Chin.A survey on TOA based wireless localization and NLOS mitigation techniques[J].IEEE Communication Surveys and Tutorials,2009,11(3):107-124.
  • 10Li Wenling,Jia Yingmin.Location of mobile station with maneuvers using an IMM-based cubature kalman filter[J].IEEE Trans on Industrial Electronics,2012,59(11):4338-4348.

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部