期刊文献+

云环境下时序遥感影像的快速缓存切片方法 被引量:5

Rapid Imagery Tile Generation for Remotely Sensed Time-series Data in the Cloud Environment
原文传递
导出
摘要 自然灾害与地表环境实时动态监测对短周期内接收影像的快速缓存切片提出了很高的要求。利用云计算并行编程模式Map-Reduce聚集计算资源,提出了一种在时序影像持续抵达情况下的快速缓存切片方法。围绕Map-Reduce本地化计算特性,该方法在任务分配中利用数据动态划分机制及基于空间相邻的上载机制对缓存切片算法进行优化加速,以满足环境动态监测对瓦片式缓存的及时性需求。实验证明,该方法在大数据量情况下较同类方法具有更好的扩展性能和加速性能。 Imagery tile caching is becoming an important technique for online Earth observation informarion sharing . Dynamic disaster and environment monitoring places great pressure on cached tiles for the generation of imagery acquired in real time or recent time. A rapid imagery tile generation approach for time-series imagery is proposed to update a Web map service based on the computing power provided by Map-Reduce, a popular parallel computing paradigm on the cloud. Based on the data lo- cality of Map-Reduce, a strategy for dynamic data partitioning is used to reduce redundant work while spatial distribution and physical storage consistentcy is maintained to improve the data locality. These optimizations aim to provide in a timely way cached tiles for dynamic environment monitoring. Performance testing indicates that this approach is more efficient and scalable than existing similar methods.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第2期243-248,273,共7页 Geomatics and Information Science of Wuhan University
基金 国家水利部公益性行业科研专项资助项目(201001046) 国家留学基金委高水平大学公派研究生资助项目(20100627064)~~
关键词 分布式计算 影像瓦片式缓存 MAP-REDUCE 时间序列 distributed computing imagery tile caching Map-Reduce time-series
  • 相关文献

参考文献9

  • 1WMS Tile Caching[EB/OL]. org/wiki/WMS_Tile_Caching,.
  • 2ArcGIS ServerMap Cache[EB/OL]. http://blogs. esri. com/Dev/blogs/arcgisserver/archive/2010-/09 /13/ArcGIS-Server-10. 0 improvements-to map-cac- he-tile-generation, aspx, 2013.
  • 3MapTiler Cluster[EB/OL]. http://help, maptiler-. org/cluster, 2013.
  • 4黄袜.高性能计算体系结构下的海量数据处理分析与优化[D].长沙:国防科学技术大学,2011.
  • 5Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters[C]. The 6th Sympo- sium on Operating Systems Design and Implementa- tion, USENIX, Berkeley, 2004.
  • 6Golpayegani N, Halem M. Cloud Computing for Satellite Data Processing on High End Compute Clusters [C]. IEEE International Conference on Cloud Computing, Bangalore, 2009.
  • 7Ermias B T. Distributed Processing of Large Remote Sensing Images Using MapReduce[M]. Saarbr0cken: I.AP Lambert Academic Publishin, 2011.
  • 8刘义,陈荦,景宁,熊伟.利用MapReduce进行批量遥感影像瓦片金字塔构建[J].武汉大学学报(信息科学版),2013,38(3):278-282. 被引量:38
  • 9李德仁,肖志峰,朱欣焰,龚健雅.空间信息多级网格的划分方法及编码研究[J].测绘学报,2006,35(1):52-56. 被引量:76

二级参考文献17

  • 1DUTTON G..Encoding and Handling Geospatial Data with Hierarchical Triangular Meshes[A].Proceeding of 7th International Symposium on Spatial Data Handling[C].[s.l.]:[s.n.].1996,34-43.
  • 2FEKETE G.Rendering and Managing Spherical Data with Sphere Quadtrees[A].Proceedings of the First 1990 IEEE Conference on Visualization[C].[s.l.]:[s.n.].1990,176-186.
  • 3GOODCHILD M F,YANG S.A Hierarchical Data Structure for Global Geographic Information Systems[J].Computer Graphics,Vision and Image Processing,1992,54(1):31-44.
  • 4SAHR K,WHITE D.Geodesic Discrete Global Grid Systems[J].Cartography and Geographic Information Science,1998,30(2):121-134.
  • 5OTTOSON P,HAUSKA H.Ellipsoidal Quadtrees for Indexing of Global Geographical Data[J].Int.J.Geographical Information Science,2002,16(3):213-226.
  • 6WALDO,Chen Z.A Quadtree for Global Information Storage[J].Geographical Analysis,1986,18(4):360-371.
  • 7CLARKE K C.Criteria and Measures for the Comparison of Global Geocoding Systems,Discrete Global Grids[EB/OL].http://www.geog.ucsb.edu/% 7Ekclarke/Papers/Global-Grids.html,2002.
  • 8SAMET H.The Quadtree and Related Hierarchical Data Structures[J].ACM Computing Surveys(CSUR),1984,16(2):187-260.
  • 9张永生,贲进,童晓冲.地球空间信息球面离散网格--理论、算法及应用[M].北京:科学出版社,2007.
  • 10Jeffrey D, Sanjay G. MapReduce.. Simplified Data Processing on Large Clusters[J]. Communications of the ACM, 2008(1): 1 958-2 008.

共引文献112

同被引文献63

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部