期刊文献+

基于SIR的SNS网络舆情话题传播模型研究 被引量:18

Research on Propagation Model of Public Opinion Topics in SNS Based on SIR
下载PDF
导出
摘要 舆情话题通常是由突发性的新闻事件所引发,社交网站(Social Network Sites,SNS)因其庞大的用户规模和开放性、即时性与互动性等特点,成为舆情话题传播的重要渠道。因此,研究SNS网络中的舆情话题传播机制,将有利于对舆情话题的传播过程进行分析与监控。然而传统的网络信息传播模型无法真实地描述SNS网络中的舆情话题传播过程。为了解决上述问题,分析了SNS网络中的信息互动模式及舆情话题的传播特点,基于无标度网络上的SIR模型,通过引入内部感染概率、外部感染概率、免疫概率以及直接免疫概率,构建了SNS网络中的舆情话题传播模型。仿真结果表明,基于SIR的舆情话题传播模型可以很好地描述SNS网络中的舆情话题演化规律。 The public opinion topics are usually caused by the sudden events, and social network sites (SNS)have become the important communication channels of the public opinion topics because of their large scale of users and the characters of open, real-time and interactive. Therefore, studying the propagation mechanism of public opinion topics in SNS will be conducive to analyzing and monitoring the propagation process of public opinion topics. However, it is difficult for the traditional information propagation models to describe the propagation and evolution of the public opinion topics in SNS. This paper analyzes the information interaction mode and propagation characteristics of the public opinion topics in SNS, and then the propagation model of public opinion topics in SNS is built up based on SIR model in the scale-free network. The model considers internal infection probability, external infection probability, immune probability and direct immune probability as the important parameters in the propagation process. The simulation results show that the model established in this paper can well describe the propagation law of public opinion topics in SNS.
作者 丁学君
出处 《计算机仿真》 CSCD 北大核心 2015年第1期241-247,共7页 Computer Simulation
基金 国家自然科学基金(71301021) 辽宁省社会科学规划基金项目(L14DGL045) 东北财经大学青年科研人才培育项目(DUFE2014Q56)
关键词 社交网站 舆情话题 传播模型 复杂网络 传染病动力学 Social network sites(SNS) Public opinion topics Propagation model Complex network Infectious disease dynamics
  • 相关文献

参考文献16

  • 1H B Hu, X F Wang. Evolution of a large online social network[J]. Physics Letters A, 2009,373(12-13) :1105-1110.
  • 2A Mislove, et al. Measurement and analysis of online social net- works[ C]. Proceedings of the 7th ACM SIGCOMM Conference on Interact Measurement, San Diego, California, 2007:29-42.
  • 3R Kumar, J Novak, A Tomkins. Structure and evolution of online social networksEM]. Link Mining: Models, Algorithms, and Ap- plications. Springer New York, 2010: 337-357.
  • 4H Chun, et al. Comparison of online social relations in volume vs interaction : a case study of cyworld [ C ]. Proceedings of the 8th ACM SIGCOMM Conference on InternetMeasurement, Vouliagme- ni, 2008:57-70.
  • 5Y Y Ahn, et al. Analysis of topological characteristics of huge on- line social networking services[ C]. Proceedings of the 16th Inter- national Conference on World Wide Web, Banff, Alberta, 2007: 835 -844.
  • 6F Figueiredo, F Benevenuto, J M Almeida. The tube over time: characterizing popularity growth of youtube videos [ C ]. Proceed- ings of the fourth ACM international conference on Web search and data mining, Hong Kong, 2011:745-754.
  • 7G Szabo, B A Huberman. Predicting the popularity of online con- tent[J]. Communications of the ACM, 2010,53 (8) : 80-88.
  • 8A Broder, et al. Graph strueture in the web [ J ]. Computer net- works, 2000,33 ( 1 ) :309-320.
  • 9C Song, S Havlin, H A Makse. Self-similarity of complex net- works[J]. Nature, 2005,433(7024) :392-395.
  • 10X Li, G Chela. A local-world evolving network model[ J]. Physi- ca.A: Statistical Mechanics and its Applications, 2003,328( 1 ) : 274 -286.

二级参考文献4

共引文献166

同被引文献185

引证文献18

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部