期刊文献+

谱聚类算法在家用负荷识别中的应用 被引量:13

Application of the spectral clustering algorithm to household load identification
下载PDF
导出
摘要 家用负荷识别可提高用户对用电情况的认知度,优化用电模式,响应节能政策。提出一种分步识别的方法。识别前依据谱聚类方法得到负荷类别及其聚类中心,建立标准模板库,存储各负荷类别的特征量,特征量主要包括6项:负荷投入或者切除时刻变化的暂态有功功率、无功功率波形标幺值及各自幅值和稳态的有功功率、无功功率值。首先以综合负荷的功率变化为依据,提取负荷变化时刻及稳定运行后的功率确定特征量。第一步粗选,依据其投入或切除瞬时波形进行调整后与标准模板库波形进行匹配确定负荷所在大类;第二步精选,依据其瞬时波形幅值与稳态运行功率值与所在类别中的负荷相应特征量进行比较得到识别结果。该方法能精准确定负荷类别,简单可靠,可为家庭负荷建模提供数据支持。实例也验证了该方法的有效性。 Household load identification can improve users' awareness of electricity consumption, optimize the power mode, and make response to the energy saving policy. A step identification method was proposed in this paper. The load classification and clustering center were obtain by the spectral clustering method before identification, and a standard template library was established to store various load category features, including the standard value and am- plitude of transient active and reactive power waveforms, and the values of steady active and reactive power. First of all, based on the power change of comprehensive load, the characteristic quantities of power were extracted when the load changed and after stable operation began. The first step was rough election, in which, the classification of the load was determined on the basis of the waveform matching between the adjusted instantaneous waveform and that in the standard template library; and the second step was careful selection, in which the identification result was got through comparing instantaneous waveform amplitude and steady power value with the corresponding feature values of the same category. The method, which is simple and reliable, can determine the load category accurately, so it can provide data support for the family load modeling. Examples have verified the effectiveness of the proposed method.
出处 《电测与仪表》 北大核心 2015年第1期119-123,共5页 Electrical Measurement & Instrumentation
关键词 谱聚类 负荷识别 分步识别 相似度 支持率 spectral clustering, load identification, step identification, similarity, support rate
  • 相关文献

参考文献13

  • 1马其燕,秦立军.智能配电网关键技术[J].现代电力,2010,27(2):39-44. 被引量:82
  • 2余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8. 被引量:519
  • 3张伯明.现代能量控制中心概念的扩展与前景展望[J].电力系统自动化,2003,27(15):1-6. 被引量:76
  • 4刘旭娜,肖先勇,李长松.动态终端能量管理系统及其节能削峰效益分析[J].华东电力,2012,40(10):1709-1714. 被引量:8
  • 5陆一鸣,刘东,柳劲松,黄玉辉,凌万水,顾建炜.智能配电网信息集成需求及模型分析[J].电力系统自动化,2010,34(8):1-4. 被引量:71
  • 6Steven R. Shaw, StevenB. Leeb, Leslie K. Norford, and Rohert W. Cox, Nonintrusive L.oad Mcmitoring and Diagnostics in Power Systems [J]. IEEE Transactions on instrumentation and measurement, 2008, 57(7) : 1445-1454.
  • 7Christopher Langhman, Kwangduk Lee, R obert Cox. Sieven Shaw,Steven Leeb, l,es Norford, and Peter Armsllxmg. Power Signature A- nalysis[ J]. IEEE power & energy magazine, 2003: 56-63.
  • 8Suzuki K, Inagaki S, Suzuki T, et aI. Nonintrusive appliance load mo- nitoring based on integer programming [ C ].// SICE Annual Confer- ence, Tokyo, Japan, 2008: 2742-2747.
  • 9Simon K K. Ng, Jian Liang, John W. M. Cheng. Automatic Appli- ance Load Signature Identification by Statistical Clustering[ C ]//Sth IET International Conference on Advanced in Power System Control, Operation and Management, Hong Kong, 2009: 1-6.
  • 10George W. Hart. Nonintrusive Appliance Load Monitoring[J]. Pro- ceedings of the IEEE, 1992, 80(12) : 1870-1891.

二级参考文献117

  • 1郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91. 被引量:93
  • 2司文武,钱沄涛.一种基于谱聚类的半监督聚类方法[J].计算机应用,2005,25(6):1347-1349. 被引量:11
  • 3余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
  • 4EPRI. 1009102 Power delivery system and electricity markets of the future[R]. PaloAlto, CA: EPRI, 2003.
  • 5EPRI. 1010915 Technical and system requirements of advanced distrihutionautomation[R]. PaloAlto, CA: EPRI, 2004.
  • 6EPRI. 1014600 Electricite de France research and development, profiling and mapping of intelligent grid r&d programs[R]. Palo Alto, CA: EPRI, 2006.
  • 7Haase P. Intelligrid: a smart network of power[J]. EPRI Journal, 2005(Fall): 17-25.
  • 8U. S. Department of Energy , National Energy Technology Laboratory. Modern grid initiative: a vision for modern grid[EB/OL]. 2007-03-01 [2008-10-10]. http://www.netl.doc.gov/modemgrid/docs/.
  • 9Galvin Electricity Initiative. The path to perfect power: a technical assessment[R]. PaloAlto, CA: GalvinElectricity Initiative, 2007.
  • 10European Commission. European technology platform smart grids: vision and strategy for Europe's electricity networks of the future [EB/OL] . 2008-10-10 . http://ec.europa.eu/research/energy/pdf/ smartgrids_en.pdf.

共引文献938

同被引文献120

引证文献13

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部