期刊文献+

一种动态和自适应公交到站时间预测方法 被引量:7

Adaptive Method of Predicting Arrival Time of Buses on Dynamic Traffic Information
下载PDF
导出
摘要 公交到站时间预测是实现智能化公交信息服务的基础,可靠地预测公交到站时间有利于提高公共交通的服务水平,以吸引更多的城市居民选择公共交通。以某城市公交系统海量的历史数据为基础,建立了基于SVM的集合了静态和动态数据的公交预测模型,该模型引入上游路段速度、下游路段最新速度、下游路段最新花时、时间段和路况拥挤程度等动态信息作为模型特征。在此基础上,根据大量公交到站时间历史数据的波动性,提出了一个基于波动性的自适应预测模型。实验结果表明,自适应预测模型优于现有模型,提高了预测的精确度和效率。 Bus arrival time prediction is the foundation of realizing intelligent bus information service.Reliable prediction of bus arrival time is beneficial to improve the public transport service level,so that it attracts more and more city residents to use public transportation.In this paper,based on the massive historical data of a city bus system in real time,SVM (Support Vector Machine) was applied to establish a bus forecasting model on the static and dynamic information.And the speed of upstream,the latest speed of downstream,the latest travel time of downstream,time-of-day,traffic congestion,etc were introduced into our dynamic model.Besides,this paper put forward an adaptive prediction model to improve the efficiency of prediction based on a lot of volatility of bus arrival time historical data.The experimental results show that the adaptive model outperforms those existing static models.
出处 《计算机科学》 CSCD 北大核心 2015年第1期253-256,289,共5页 Computer Science
基金 国家自然科学基金(61070123) 江苏省自然基金(BK2011282) 江苏省高校自然科学重大基础研究项目(11KIJ520003)资助
关键词 公交到站时间 实时预测 动态预测 自适应模型 支持向量机 波动性统计 Bus arrival time Real-time prediction Dynamic prediction Adaptive model SVM Volatility statistics
  • 相关文献

参考文献11

  • 1Li W,Koendjbiharie W,de M Juca R C,et al. Algorithm for esti- mating bus arrival times using GPS data[C] // Proceedings of the 5th IEEE International Conference on Intelligent Transpor- tation Systems. Singapore, 2002 : 868-873.
  • 2李天雷.基于GPS数据的公交行程时间计算与预测系统[D].长春:吉林大学软件学院,2009.
  • 3Li F, Yu Y, Lin H, et al. Public bus arrival time prediction based on traffic information management system[C]//2011 IEEE In- ternational Conference on Service Operations, Logistics, and In- formaties (SOLD. 2011 : 336-341.
  • 4Chung E H, Shalaby A. Expected time of arrival model for school bus transit using real-time global positioning system- based automatic vehicle location data [J]. Journal of IntelligentTransportation Systems: Technology, Planning, and Operations, 2007,11 (4) : 157-167.
  • 5Liu H, Zuylen H V, Lint H V, et al. Predicting urban arterial travel time with state-space neural networks and Kalman filters [C] // Transportation Research Board, Annual Meeting (CD- ROM). Washington, 2006:99-108.
  • 6Park J, Chen Z, Kiliaris L, et al. Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion[J]. IEEE Transac- tions on Vehicular Technology, 2009,58(9) : 4741-4756.
  • 7Yu B, Lam W H K,Tam M L. Bus arrival time prediction at bus stop with multiple routes [J]. Transportation Research Part C: Emerging Technologies, 2011,19(6) : 1157-1170.
  • 8Shen X,Chen J. Study on prediction of traffic congestion based on LVQ neural network [ C] //International Conference on Measuring Technology and Mechatronics Automation. 2009: 318-321.
  • 9Rahman H A, Marti J R, Srivastava K D. Road traffic forecas- ting through simulation and live GPS-Feed from intervehicle networks[C]//Global Humanitarian Technology Conference (GHTC). 2012 : 36-40.
  • 10于滨,杨忠振,林剑艺.应用支持向量机预测公交车运行时间[J].系统工程理论与实践,2007,27(4):160-164. 被引量:31

二级参考文献22

  • 1Dailey D,Maclean S,Cathey F,et al.Transit vehicle arrival prediction:Algorithm and large-scale implementation[J].Journal of the Transportation Research Board,2001,1771,46-51.
  • 2Shalaby A,Farhan A.Bus Travel Time Prediction Model for Dynamic Operations Control and Passenger Information Systems,CD-ROM,The 82nd Annual Meeting of the Transportation Research Board,Washington,DC.2003.
  • 3Park D,Rilett L R.Forecasting freeway link travel times with a multilayer feedforward neural network[J].Computer-Aided Civil and Infrastructure Engineering,1999,14(5):357-367.
  • 4Ding Y,Chien S.The Prediction of Bus Arrival Times with Link-Based Artificial Neural Networks[C]//Proceedings of the International Conference on Computational Intelligence & Neurosciences (CI&N)-Intelligent Transportation Systems,Atlantic City,New Jersey,2000,730-3.
  • 5Chien I-Jy,Ding Y,Wei C.Dynamic bus arrival time prediction with artificial neural networks[J].Journal of Transportation Engineering,ASCE,2002,128(5):429-38.
  • 6Chen M,Liu X B,Xia J X,et al.A dynamic bus-arrival time prediction model based on APC data[J].Computer-Aided Civil and Infrastructure Engineering,2004,19:364-376.
  • 7Lawrence S,Giles C L,Tsoi A -C.Lessons in Neural Network Training:Overfitting May Be Harder Than Expected[C]//Proceedings of the Fourteenth National Conference on Artificial Intelligence,Mento Park,CA:AAAl Press.1997,AAAl-97,540-545.
  • 8Moody J E.The effective number of parameters:An analysis of generalization and regularization in nonlinear learning systems[J].NIPS,1992,4:847-854.
  • 9Sarle W S.Stopped Training and Other Remedies for Overfitting[C]//Proceedings of the Twenty-seventh Symposium on the Interface of Computing Science and Statistics,1995,352-360.
  • 10Weigend A.On Overfitting and the Effective Number of Hidden Units[C]//Proceedings of the 1993 Connectionist Models Summer School,1994,335-342.

共引文献31

同被引文献39

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部