期刊文献+

基于RGB-D相机的实时人数统计方法

Real-time method for people counting based on RGB-D cameras
下载PDF
导出
摘要 针对传统人数统计方法因遮挡、光照变化导致准确率低的问题,提出一种适用于深度图的模拟降水分水岭算法(Depth map based Rainfalling Watershed Segmentation,D-RWS)。修复深度图并用混合高斯背景建模提取前景。利用D-RWS算法分割深度图中感兴趣的行人头部区域(Region Of Interest,ROI)。采用质心欧式距离最短法关联各帧中同一目标并跟踪计数。实验结果表明:提出的方法准确率能够达到98%以上,平均每帧处理时间为25 ms(40 f/s),准确率和实时性可满足实际应用的要求。 To solve problems such as occlusion and illumination changes that lead to low accuracy on conventional methods, a novel method D-RWS(Depth map based Rainfalling Watershed Segmentation)is proposed. Depth map is inpainted and foreground is extracted with the help of mixture of Gaussian background model. D-RWS algorithm is used to segment head area as Region Of Interest(ROI). People are tracked and counted by analyzing trajectories, which associated by minimal Euclidean distance between the centers. Experimental results show that proposed people counting system can, on average, count people with an accuracy of 98%and operate at approximately 25 milliseconds per frame(40 f/s). The accuracy and real-time performance fully meet the requirements of practical application.
出处 《计算机工程与应用》 CSCD 2014年第23期156-162,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61172089) 湖南省科技厅资助项目(No.2014WK3001)
关键词 RGB-D相机 PrimeSensor 人数统计 D-RWS算法 质心跟踪 RGB-D camera PrimeSensor people counting Depth map based Rainfalling Watershed Segmentation (D-RWS) centroid tracking
  • 相关文献

参考文献18

  • 1Loy C C,Chen K,Gong S,et al.Crowd counting and profiling:methodology and evaluation[M]//Modeling,simulation and visual analysis of crowds.New York:Springer,2013:347-382.
  • 2Dollar P,Wojek C,Schiele B,et al.Pedestrian detection:an evaluation of the state of the art[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):743-761.
  • 3Rabaud V,Belongie S.Counting crowded moving objects[C]//IEEE Conference on Computer Vision and Pattern Recognition,2006:705-711.
  • 4Chan A B,Vasconcelos N.Counting people with low-level features and Bayesian regression[J].IEEE Transactions on Image Processing,2012,21(4):2160-2177.
  • 5Tanner R,Studer M,Zanoli A,et al.People detection and tracking with TOF sensor[C]//IEEE 5th International Conference on Advanced Video and Signal Based Surveillance,2008:356-361.
  • 6Fu H,Ma H,Xiao H.Scene-adaptive accurate and fast vertical crowd counting via joint using depth and color information[J].Multimedia Tools and Applications,2013:1-17.
  • 7Zhu L,Wong K H.Human tracking and counting using the KINECT range sensor based on Adaboost and Kalman filter[M]//Advances in visual computing.Berlin:Springer,2013:582-591.
  • 8Lin D T,Jhuang D H.A novel layer-scanning method for improving real-time people counting[C]//HCI,2013:661-665.
  • 9Hsieh C T,Wang H C,Wu Y K,et al.A Kinect-based people-flow counting system[C]//2012 International Symposium on Intelligent Signal Processing and Communications Systems(ISPACS),2012:146-150.
  • 10Fu H,Ma H,Xiao H.Real-time accurate crowd counting based on RGB-D information[C]//2012 19th IEEE International Conference on Image Processing(ICIP),2012:2685-2688.

二级参考文献40

  • 1杨文明,陈国斌,沈晔湖,刘济林.一种基于分水岭变换的图像分割方案[J].浙江大学学报(工学版),2006,40(9):1503-1506. 被引量:22
  • 2丛培盛,孙建忠.分水岭算法分割显微图像中重叠细胞[J].中国图象图形学报,2006,11(12):1781-1783. 被引量:27
  • 3李全民,张运楚.自适应混合高斯背景模型的改进[J].计算机应用,2007,27(8):2014-2017. 被引量:21
  • 4Vincent L,Soille P.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 5Smet P D,Pires R L.Implementation and Analysis of an Optimized Rain Falling Watershed Algorithm[C] //Proc.of SPIE'00.San Diego,CA,USA:[s.n.] ,2000:759-766.
  • 6Karantzalos K,Argialas D.Improving Edge Detection and Watershed Segmentation with Anisotropic Diffusion and Morphological Levellings[J].International Journal of Remote Sensing,2006,27(24):5427-5434.
  • 7Wren C, Azarbayejani A, Darrell T, et al.Pfinder: real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :780-785.
  • 8Stauffer C, Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins:IEEE, 1999:246-252.
  • 9Wayne P P, Schoonees J A.Understanding background mixture models for foreground segmentation[C]//Proceedings Image and Vision Computing.New Zealand: University of Auckland, 2002: 267-271.
  • 10Kaewtrakulpong P, Bowden R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]//Proc 2nd European Workshop on Advanced Video Based Surveillance Systems AVBS01.Kingston upon Thames: Kluwer Academic Publishers, 2001 : 1-5.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部