期刊文献+

基于稀疏预处理和循环观测的语音压缩感知 被引量:1

Speech compressed sensing based on sparse pre-treatment and circulant measurement
下载PDF
导出
摘要 基于压缩感知原理提出将语音信号DCT域上的小系数在一定阈值下置零预处理来改善变换域稀疏性;用三种方法构造循环观测矩阵作为观测矩阵来代替高斯随机矩阵,并证明了构造的观测矩阵与DCT基之间的非相关性;利用OMP正交匹配追踪方法对观测信号进行恢复。仿真实验结果表明,预处理后使用循环观测在不同压缩率下有更低的重构误差,同时分析各帧信噪比情况保证在比较低的压缩率下仍能得到良好的主观评估。 Based on the compressed sensing theory, it proposes a pre-treatment for the sparsity of transform-domain by zeroing the value below the threshold in the DCT domain. It builds the circulant measurement matrix in three ways instead of Gaussian random matrix, and proves the non-coherence between measurement matrix and DCT base. It uses the OMP method to recover the signal. Simulation experimental result demonstrates that after pre-treatment using circulant measure-ment matrix has lower restruction error in different compression rate. While analyzing the SNR of each frame, it guaran-tees a low compress rate and has a good score in PESQ.
出处 《计算机工程与应用》 CSCD 2014年第23期220-224,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075008)
关键词 语音压缩感知 离散余弦变换(DCT)域稀疏预处理 循环观测 正交匹配追踪(OMP) speech compressed sensing Discrete Cosine Transform (DCT) sparse pre-treatment circulant measurement Orthogonal Matching Pursuit(OMP)
  • 相关文献

参考文献11

  • 1Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Tsaig Y,Donoho D.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 3Candes E J,Romberg J.Sparsity and incoherence in compressive sampling[J].Inverse Problems,2007,23(3):969-985.
  • 4Emmanuel C,Terence T.Near optimal signal recovery from random projections:universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 5Holger R.Circulant and Toeplitz matrices in compressed sensing[C]//SPARS’09,Saint Malo,2009.
  • 6Moreno-Alvarado R G,Martinez-Garcia M.DCT-compressive sampling applied to speech signals[C]//21st International Conference on Electrical Communications and Computers,San Andres Cholula,Puebla,Mexico,2011:55-59.
  • 7郭海燕,王天荆,杨震.DCT域的语音信号自适应压缩感知[J].仪器仪表学报,2010,31(6):1262-1268. 被引量:27
  • 8季云云,杨震.基于自相关观测的语音信号压缩感知[J].信号处理,2011,27(2):207-214. 被引量:14
  • 9Pati Y C,Rezaifar R K.Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Annual Asilomar Conference in Signals,Systems and Computers,Pacific Grove,CA,USA,1993,1:40-44.
  • 10Rao K R,Kim D N,Hwang J J.Fast Fourier transform:algorithms and applications[M].Arlington:Springer,2010:34-37.

二级参考文献33

  • 1DONOHO D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2TSAIG Y,DONOHO D.Extensions of compressed sensins[J].Signal Processing,2006,86(3):533-548.
  • 3CAND(E)S E J,WAKIN M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008:21-30.
  • 4ROMBERG J,Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 5DUARTE M,DAVENPORTM,TAKHARD,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
  • 6ELAD M,STARCK J L,QUERRE P,et al.Simultaneous cartoon and texture image inpainting using morphological component analysis(MCA)[J].Appl.Comput.Harmon.Anal.2005,19:340-358.
  • 7GEMMEKE JF,CRANEN B.Using sparse representations for missing data imputation in noise robust speech recognition[C].European Signal Processing Conf.(EUSIPCO),Lausanne,Switzerland,August 2008,pp:987-991.
  • 8WANG ZH M,ARCET G R,PAREDEST J L.Colored random projections for compressed sensing[C].ICASSP,2007:873-876.
  • 9JI SH H,CARIN L.Bayesian compressive sensing[J].IEEE Transactions on Signal Processing,2008,56(6):2346-2356.
  • 10BARANIUK R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.

共引文献36

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部