摘要
在独立同分布的随机环境下,建立了随机环境中可迁移的两性分枝过程{Zn}n≥0,且迁移人口数依赖当前人口数.证得{Zn}n≥0和{(Fn,Mn)}n≥0是随机环境中的马氏链,并得到了第n代每个配对单元平均增长率{rk}k>0的极限性质,从而推广了经典两性分枝过程的相关理论.
In this paper,we consider a bisexual branching process with population-size-dependent migration in independent and identically distributed random environments.It is proved the bisexual branching process is Markov chains in random environments and the double chains about the number of females and males in the nth generation is double Markov chains in random environments,too.The limit properties of the mean growth rate per mating unit is studied.Some limit properties known about classical bisexual branching process in random environments are enlarged.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期9-14,共6页
Journal of Northeast Normal University(Natural Science Edition)
基金
安徽省自然科学基金资助项目(1308085MA03)
安徽高校省级自然科学研究项目(kj2013z331)
关键词
随机环境
两性分枝过程
迁移依赖人口数
马氏链
极限性质
random environments
bisexual branching process
population-size-dependent migration
Markov chains
limit properties