期刊文献+

一种基于密度的数据流检测算法SWKLOF 被引量:3

An Algorithm of the Datastreams Detection Based on Density
下载PDF
导出
摘要 总结目前数据流在线检测算法的优缺点,提出了一种新的数据流在线检测算法—SWKLOF。该算法采用滑动时间窗口对数据流进行封装,用k-距离进行剪枝,剔除大部分正常数据,对剩余疑似异常数据采用局部离群因子LOF(local outlier factor)进一步精确筛选。理论分析和实验结果表明该算法降低了时间复杂度,提高了检测准确性。 Summarizing the advantages and disadvantages of the current datastreams clustering algorithms,this paper proposes a new datastreams clustering algorithm——SWKLOF. The algorithm uses sliding time window to encapsulate the datastreams,using the k-distance to pruning,then removing most of the normal data. At last,using the local outlier factor to screen accurately the remaining data which are suspected abnormal datas. Theoretical analysis and experimental results show that the algorithm reduces the time complexity and improves greatly the accuracy of datastreams detection.
出处 《科学技术与工程》 北大核心 2014年第34期219-223,共5页 Science Technology and Engineering
基金 "十二五"国家科技支撑计划项目(2012BAF12B14) 贵州省重大科技专项(黔科合重大专项字(2012)6018) 贵州省重大科技专项(黔科合重大专项字(2013)6019)资助 贵州省工业攻关项目(黔科合GY字(2013)3020)
关键词 数据流 滑动时间窗口 k-距离 局部离群因子 异常检测 datastreams sliding time window k-distance local outlier factor anomaly detection
  • 相关文献

参考文献17

  • 1周心林,赵雷.数据流上多滑动窗口聚集查询的优化算法[J].小型微型计算机系统,2013,34(4):774-777. 被引量:7
  • 2Jin Cheqing , Xu Jeffrey, Zhou Aoying, et al. Efficient clustering of uncertain data streams. Knowledge and Information Systems, 2013: 2-10.
  • 3He Haltao, Zhao Jintian. A density grid-based uncertain data stremn clustering algorithm. Journal of Computatioual information Systems, 2014:3619-3624.
  • 4于翔,印桂生,许宪东,王建伟.一种基于区域划分的数据流子空间聚类方法[J].计算机研究与发展,2014,51(1):88-95. 被引量:15
  • 5Aggarwal C C, Yu P S. A framework for clustering uncertain data streams. ICDE 2008, Proceedings of the 24th International Confer- ence on Data Engineering,2008 : 150-159.
  • 6Knott E, Ng R. Algorithms for mining distance-based outliers in large datasets. Proceedings of the 24th VLDB Conference, 1998:392-403.
  • 7Knorr E M, Ng R T. A unified approach for mining outliers. Pro- eeedings of the 1997 contrence of the Centre for Advanced Studies on Collaborative research, IBM Press, 1997 : 11.
  • 8Knott E M, Ng R T, Tucakov V. Distance-based outliers: algorithms and applications. The VLDB Journal, 2002 ;8 (3-4) :237-253.
  • 9Breunig M, Kriegel H P, NgR T, et al. Optics-of: identifying local outliers. Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Data-bases, 1999:262-270.
  • 10杨金伟,王丽珍,陈红梅,赵丽红.基于距离的不确定数据异常点检测研究[J].山东大学学报(工学版),2011,41(4):34-37. 被引量:5

二级参考文献68

  • 1钟颖莉,李金宝,王伟平,艾春宇.数据流上的复合滑动窗口聚集算法[J].计算机工程与应用,2006,42(14):187-191. 被引量:2
  • 2孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 3倪巍伟,陆介平,陈耿,孙志挥.基于k均值分区的数据流离群点检测算法[J].计算机研究与发展,2006,43(9):1639-1643. 被引量:20
  • 4Subramaniam S, Palpanas T, Papadopoulos D, et al. Online Outlier Detection in Sensor Data Using Non-parametric Models[C]// Proceedings of the 32nd International Conference on Very Large Data Bases. Seoul, Korea: [s. n.], 2006: 187-198.
  • 5Pokrajac D, Lazarevic A. Incremental Local Outlier Detection for Data Streams[C]//Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu, Hawaii, USA: IEEE Press, 2007: 504-515.
  • 6Hawkins D. Identification of Outliers[M]. London, UK: Chapman and Hall, 1980.
  • 7薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 8Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Proc of ACM SIGMOD Conf.New York:ACM,2000:427-438.
  • 9Tang J,Chen Z,Fu A,et al.Enhancing effectiveness of outlier detections for low-density patterns[C]//Proc of Advances in Knowledge Discovery and Data Mining 6th Pacific Asia Conf.Berlin:Springer,2002:535-548.
  • 10Papadimitirou S,Kitagawa H,Gibbons P B,et al.LOCI:Fast outlier detection using the local correlation integral[C]//Proc of the 19th Int Conf on Data Engineering.Los Alamitos:IEEE Computer Society,2003:315-326.

共引文献134

同被引文献35

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部