期刊文献+

基于迭代多尺度形态学开重建的城区LiDAR滤波方法 被引量:19

Iterative multi-scale filter based on morphological opening by reconstruction for Li DAR urban data
原文传递
导出
摘要 针对形态学运算在机载Li DAR滤波中最大窗口尺寸的选择问题,提出了一种基于形态学开重建的迭代多尺度点云滤波算法。通过循环迭代多尺度开重建运算,克服开重建对矮小地物的误判问题,自动获取开重建运算的最大窗口尺寸,解决了对城市区域滤波的窗口适宜尺寸选择问题,提高了地物与地面点分类的正确性。使用ISPRS提供的城区样本测试数据开展实验,结果表明:其Ⅰ类、Ⅱ类及总误差均值分别达到3.10%、6.05%和4.11%,在Ⅱ类误差不显著增加的情况下,Ⅰ类误差和总误差均值同比均为最小,整体分类与自动识别性能优于常规滤波算法。 Aimed at the maximum window size problem of LiDAR morphological method on unknown region, a morphological filter of iterative multi- scale opening by reconstruction (IMORF) was proposed on the basis of traditional morphological filtering algorithms. Multi-scale opening by reconstruction (MORF) was utilized to get maximum window size automatically, which can help user settle the suitable window size problem of unknown region. MORF was used iteratively to settle the classification error of the low objects that were nearby high and large objects. The experimental results for ISPRS urban data show that IMORF can classify terrain and off-terrain points effectively, and the mean of TypeⅠ, Type Ⅱ and total error are 3.10%, 6.05% and 4.11% respectively. Compared with other traditional filtering methods, the mean of Type Ⅰ Error and Total Error of IMORF are minimum with Type Ⅱ Error increased not obviously.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第1期363-369,共7页 Infrared and Laser Engineering
基金 国家自然科学基金(51178404 41072220 41201434) 高等学校博士学科点专项科研基金(20100184110019) 中央高校基本科研业务费专项资金(SWJTU09CX010 SWJTU09BR050 2682013CX009)
关键词 激光雷达 滤波 形态学开重建 多尺度开重建 迭代多尺度开重建 LiDAR filtering morphological opening by reconstruction(MORF) multi-scale opening by reconstruction iterative multi-scale opening by reconstruction(IMORF)
  • 相关文献

参考文献14

  • 1Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1-2): 85-101.
  • 2黄先锋,李卉,王潇,张帆.机载LiDAR数据滤波方法评述[J].测绘学报,2009,38(5):466-469. 被引量:96
  • 3Meng X, Currit N, Zhao K. Ground filtering algorithms for airborne liDAR data: a review of critical issues [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 2 (3): 8332860.
  • 4Axelsson P. DEM generation from laser scanner data using adaptive TIN models [J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33 (B4/1): 110-117.
  • 5孙崇利,苏伟,武红敢,刘睿,刘婷,黄健熙,朱德海,张晓东,刘峻明.改进的多级移动曲面拟合激光雷达数据滤波方法[J].红外与激光工程,2013,42(2):349-354. 被引量:16
  • 6Chen Q. Filtering airborne laser scanning data with morphological methods [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(2): 175-185.
  • 7Shao Y. Ground point selection and building detection from airborne LiDAR data [D]. Taiwan: National Central University, 2007.
  • 8Zhang K, Chen S C, Whitman D, et al. A progressivemorphological filter for removing nonground measurement from LIDAR data [J]. IEEE Transactions on CJeoseienee and Remote Sensing, 2003, 41(4): 872-882.
  • 9沈晶,刘纪平,林祥国.用形态学重建方法进行机载LiDAR数据滤波[J].武汉大学学报(信息科学版),2011,36(2):167-170. 被引量:33
  • 10Mongus D, Falik B. Parameter-free ground filtering of LiDAR data for automatic DTM generation [J]. 1SPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 1-12.

二级参考文献34

共引文献131

同被引文献175

引证文献19

二级引证文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部