期刊文献+

基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究 被引量:7

The Interpulse Frequency Agility ISAR Imaging Technology Based on Sparse Bayesian Method
下载PDF
导出
摘要 传统捷变频成像方法具有高旁瓣、低分辨率的缺点。鉴于捷变频ISAR回波信号的稀疏性,该文基于原始数据的2维压缩感知方案,在贝叶斯原理框架下,用稀疏贝叶斯算法方差成分扩张压缩方法(Ex Co V)实现捷变频ISAR像的重建。贝叶斯框架下的稀疏重构算法考虑了稀疏信号的先验信息以及测量过程中的加性噪声,因而能够更好地重建目标系数。作为一种新的稀疏贝叶斯算法,Ex Co V不同于稀疏贝叶斯学习(SBL)算法中赋予所有的信号元素各自的方差分量参数,Ex Co V方法仅仅赋予有重要意义的信号元素不同的方差分量,并拥有比SBL方法更少的参数,克服了SBL算法参数多时效性差的缺点。仿真结果表明,该方法能克服传统捷变频成像缺点,并能够实现低信噪比条件下的2维高精度成像。 Traditional frequency agility ISAR imaging method suffers from high sidelobe and low resolution. To improve the resolution, by exploiting the sparsity of targets in the received echo, this paper uses the sparse Bayesian algorithm, namely Expansion-Compression Variance-component based method(Ex Co V), to reconstruct the ISAR image from the original Compressed Sensing(CS) ISAR data. By taking into account of the prior information of the sparse signal and the additive noise encountered in the measurement process, the sparse recover algorithm under the Bayesian framework can reconstruct the scatter coefficient better than the traditional methods. Different from the Sparse Bayesian Learning(SBL) endowing variance-components to all elements, the Ex Co V only endows variance-components to the significant signal elements. This leads to much less parameters and faster implementation of the Ex Co V than the SBL. The simulation results indicate that it can conquer the problem brought by traditional methods and achieve high precision agility ISAR imaging under the low SNR.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第1期1-8,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61171133) 国家自然科学青年基金(61101182 61302148)资助课题
关键词 ISAR 捷变频 压缩感知 稀疏贝叶斯学习算法 方差成分扩张压缩方法(Ex Co V) ISAR Frequency agility Comressed Sensing(CS) Sparse Bayesian Learning(SBL) algorithm Expansion-Compression Variance(Ex Co V) component
  • 相关文献

参考文献28

  • 1RichardGW.吕跃广,详.电子情报一雷达信号截获与分析[M].北京:电子工业出版社,2008:12-18.
  • 2赵宗峰.基于信号波形设计的SAR抗干扰技术研究[D].[硕士论文],国防科技大学,2007.
  • 3赵博,周峰,保铮.基于电磁散射模型的ISAR空中目标欺骗干扰方法[J].电子与信息学报,2014,36(1):194-201. 被引量:8
  • 4Pan Xiao-yi, Wang Wei, Feng De-jun, et al.. On deception jamming for countering bistntic ISAR based on sub-Nyquistsampling[J]. IET Radar, Sonar & Navigation, 2014, 8(3): 173-179.
  • 5Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency ilfformation[J]. IEEE Transactions on Information Th.eory, 2006, 52(2): 489-509.
  • 6Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 7Yang Jun-gang, Thompson J, Huang Xiao-tao, et al.. Raldom-fi-equency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
  • 8Ugur S mid Arikaa O. SAR image reconstruction and autofocus by compressed sensing[J]. Digital Signal Processing, 2012, 22(7): 923-932.
  • 9Rao Wei, Li Gang, Wang Xi-qin, et al.. Adaptive sparse recovery by parametric weighted L minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal o/ Selected Topics in Applied Earth ObseT"vations and Remote Sensing, 2013, 6(2): 942-952.
  • 10刘天鹏,刘振,魏玺章.基于压缩感知的脉间捷变频SAR成像研究[J].电子学报,2012,40(6):1073-1078. 被引量:6

二级参考文献77

  • 1金添,宋千,孙晓坤,周智敏.地表穿透合成孔径雷达浅地表金属地雷二维电磁特征研究[J].电子学报,2006,34(12):2246-2249. 被引量:9
  • 2赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,2005.
  • 3Figueiredo M. Adaptive sparseness using Jeffreys prior[C]. Advances in Neural Information Processing Systems, Whistler, British Columbia, 2002. http://books.nips.ee/ papers/files/nips14/AA07.pdf.
  • 4Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 2(1): 211-244.
  • 5Faul A C and Tipping M E. Analysis of sparse Bayesian learning [C]. Advances in Neural Information Processing Systems (NIPS 14), Whistler, British Columbia, 2002: 383-389.
  • 6Tipping M E and Faul A C. Fast marginal likelihood maximization for sparse Bayesian models[C]. Proc. 9th International Workshop on Artificial Intelligence and Statistics, Florida, American, 2003. [OL]. Available: http:// eiteseer.ist.psu.edu/611465.htinl.
  • 7Cetin M. Feature-enhanced synthetic aperture radar imaging [D]. College of Engineering, Boston University, Boston, MA, 2001.
  • 8Chen V C and Ling H. Time-Frequency Transforms for Radar Imaging and Signal Analysis. Norwood, MA, Artech House. 2002: 155-164.
  • 9Candes E J, Romberg J and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 10Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE on Signal Processing Magazine, 2008, 25(2): 21-30.

共引文献37

同被引文献66

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部