摘要
利用微分代数方程离散化处理后其差分方程所具有的递推特性,结合内点算法修正方程计算,通过对内点修正方程的递推降阶解耦,把含多变量高维微分代数方程约束的电力系统暂态稳定约束最优潮流模型(transient stability constraints optimal power flow,TSCOPF)完全等价地转化为与传统最优潮流模型相同规模的问题来求解。新算法可以方便地应用于并行和分布式计算环境,从而极大地平衡原模型的计算量,提高求解速度。大规模TSCOPF算例结果显示了所提方法的有效性,可提高计算速度数十倍。
After differential algebraic equations converted into discrete equations with recursive properties by using the implicit trapezoidal rule, recursive reduced-order decoupling approach proposed for the calculation of transient stability constraints optimal power flow(TSCOPF). New decoupling approach can decouple and reduce the order of correction equation of TSCOPF within interior point method, and transform the scale of TSCOPF into general size optimal power flow(OPF) equivalent completely. It can be applied to parallel and distributed computing environment easily, balance the calculation of the original model, improve the speed of solution in dozens of times. Several large scale numerical test cases show the effectiveness of the new approach.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2015年第2期335-343,共9页
Proceedings of the CSEE
基金
广西理工科学实验中心重点项目(LGZX201209)~~
关键词
最优潮流
暂态稳定
递推降阶解耦
现代内点算法
optimal power flow(OPF)
transient stability
recursive reduced-order decoupling
interior point method