期刊文献+

复杂环境下的循环平稳信号DOA估计 被引量:3

Cyclostationary signal DOA estimation under complex environment
下载PDF
导出
摘要 针对复杂战场环境下,接收机周围可能存在多个照射源,并且照射源基本信息未知,无法区分感兴趣信号和干扰信号,无法得到准确的感兴趣基站方位信息的问题,提出基于循环平稳的感兴趣基站到达角估计方法.首先针对被动接收情况下循环平稳信息无法获取的问题,提出利用接收信号获得各基站信号的循环频率信息的方法.随后提出利用感兴趣信号的循环频率增强感兴趣信号,同时抑制其他杂波干扰.最后仿真验证文中方法能够获得比常规方法更准确的到达角估计,并适用于阵列天线小于信号源个数的欠定情况. Because in the unknown complex battlefield environment, there may be multiple illuminators around the receiver, the basic information on the illuminator is unknown, and it is impossible to distinguish between interested and interfering signals, so that it is impossible to obtain accurate direction information on the interested station, we propose a cyclostianarity-based direction of arrival estimation method. First, for unknown cyclostiaonarity in the passive bistatic radar, we propose to use the cyclic autocorrelation function of the received signal to obtain cycle-frequency information on each base station signals. Then the cyclostianarity of the signal of interest is applied to enhance the signal of interest, while suppressing other clutters. Finally, the simulation method verifies that the proposed method can obtain more accurate direction estimation than the conventional method, and that it is also applicable to the underdetermined case where the number or" antennas is less than the number of sources.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第1期91-97,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61372136) 教育部创新团队计划资助项目(IRT0954)
关键词 外辐射源雷达 认知雷达 频偏 直达波提纯 目标检测 循环平稳 passive bistatic radar cognitive radar frequency offset direct signal reconstruction target detection eyclostationarity
  • 相关文献

参考文献5

二级参考文献64

  • 1周恩,陈茅茅,王文博.多径衰落信道下OFDM定时同步算法的研究[J].北京邮电大学学报,2005,28(3):62-64. 被引量:10
  • 2黄知涛,周一宇,姜文利.基于最小方差谱估计的循环平稳信号到达角估计方法[J].电子学报,2005,33(9):1590-1593. 被引量:5
  • 3孙献璞,金华峰,王悦.一种新的OFDM符号定时和频率同步方案[J].西安电子科技大学学报,2006,33(6):931-934. 被引量:5
  • 4P. Bofill and M. Zibulevsky, "Underdetermined blind source sep- aration using sparse representations" Signal Processing, Vol.81 No.ll, pp.2353-2362, 2001.
  • 5P. Georgiev and F. Theis, "Sparse component analysis and blin source separation of underdetermined mixtures", IEEE Tray on Neural Networks, Vo1.16, No.4, pp.992-996, 2005.
  • 6M. Aharon, M. Elad, A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation", IEEE Trans. on Signal Processing, Vol.54, No.ll, pp.4311- 4322, 2006.
  • 7Z.S. He and A. Cichocki, "K-hyperline clustering learning for sparse component analysis", Signal Processing, Vol.89, No.6 pp.1011-1022, 2009.
  • 8F. Abrard and Y. Deville, "A time-frequency blind signal sepa- ration method applicable to underdetermined mixtures of de- pendent sources", Signal Processing, Vol.85, No.6, pp.1389- 1403, 2005.
  • 9M. Puigt and Y. Deville, "Time-frequency ratio-based blind sep- aration methods for attenuated and time-delayed sources", Me- chanical Systems and Signal Processing, Vo1.19, No.6, pp.1348 1379, 2005.
  • 10Y.Q. Li, S.I. Amari and A. Cichocki, "Underdetermined blind source separation based on sparse representation", IEEE Trans. on Signal Processing, Vol.54, No.2, pp.423-437, 2006.

共引文献14

同被引文献41

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部